A New Efficient Quantitative Multi-component Phase Field: Lattice Boltzmann Model for Simulating Ti6Al4V Solidified Dendrite Under Forced Flow

Abstract

Ti6Al4V is a widely used, multi-component alloy in additive manufacturing, during which the fluid flow in the molten pool significantly affects the solidified dendrites. To predict and further control the microstructure, modeling and simulating the microstructure evolution play a critical role. In this study, a newly developed, efficient, quantitative multi-component phase-field (PF) model is coupled with a lattice Boltzmann (LB) model to simulate Ti6Al4V solidified dendrite evolution under fluid flow. The accuracy and convergence behavior of the model is validated by the Gibbs–Thomson relation at the dendrite tip. Single and multiple two-dimensional (2D) equiaxed dendrite evolution cases under forced flow were simulated. Results show that the dendrite pattern is influenced remarkably by the fluid flow. Underlying mechanisms of the asymmetrical evolution are revealed by discussing the interaction among the flow, composition distribution and dendrite morphology, quantitatively. The dendrite kinetics are also derived, which ascertains the relationship between tip velocity and undercooling and inlet velocity and is the foundation for larger-scale simulation. We believe that the coupled quantitative multi-component PF–LB framework employed in this study helps in investigating the solidified dendrite morphology evolution in a deep and quantitate manner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, John Wiley & Sons, 2003.

    Google Scholar 

  2. 2.

    2. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang, Progress in Materials Science, 2018, 92, 112-224.

    CAS  Article  Google Scholar 

  3. 3.

    3. B. E. Carroll, T. A. Palmer and A. M. Beese, Acta Materialia, 2015, 87, 309-320.

    CAS  Article  Google Scholar 

  4. 4.

    4. Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen and W. Huang, Acta Materialia, 2017, 132, 82-95.

    CAS  Article  Google Scholar 

  5. 5.

    5. A. Yamanaka, T. Aoki, S. Ogawa and T. Takaki, Journal of Crystal Growth, 2011, 318, 40-45.

    CAS  Article  Google Scholar 

  6. 6.

    6. W. Sun, R. Yan, Y. Zhang, H. Dong and T. Jing, Computational Materials Science, 2019, 160, 149-158.

    CAS  Article  Google Scholar 

  7. 7.

    7. N. Provatas, N. Goldenfeld and J. Dantzig, Physical Review Letters, 1998, 80, 3308-3311.

    CAS  Article  Google Scholar 

  8. 8.

    8. Y. Xie, H. Dong, J. Liu, R. L. Davidchack, J. A. Dantzig, G. Duggan, M. Tong and D. J. Browne, Journal of Algorithms & Computational Technology, 2013, 7, 489-507.

    Article  Google Scholar 

  9. 9.

    9. H. L. Wei, J. W. Elmer and T. DebRoy, Acta Materialia, 2017, 126, 413-425.

    CAS  Article  Google Scholar 

  10. 10.

    10. S. Chen, G. Guillemot and C.-A. Gandin, Acta Materialia, 2016, 115, 448-467.

    CAS  Article  Google Scholar 

  11. 11.

    11. X. Li and W. Tan, Computational Materials Science, 2018, 153, 159-169.

    CAS  Article  Google Scholar 

  12. 12.

    12. O. Zinovieva, A. Zinoviev and V. Ploshikhin, Computational Materials Science, 2018, 141, 207-220.

    CAS  Article  Google Scholar 

  13. 13.

    13. W. Kurz, B. Giovanola and R. Trivedi, Acta metallurgica, 1986, 34, 823-830.

    CAS  Article  Google Scholar 

  14. 14.

    14. H. Xing, X. Dong, J. Wang and K. Jin, Metallurgical and Materials Transactions B, 2018, 49, 1547-1559.

    Article  Google Scholar 

  15. 15.

    15. W.-z. Sun, R. Yan, X. Wan, H.-b. Dong and T. Jing, China Foundry, 2018, 15, 422-427.

    Article  Google Scholar 

  16. 16.

    16. D. Sun, M. Zhu, S. Pan and D. Raabe, Acta Materialia, 2009, 57, 1755-1767.

    CAS  Article  Google Scholar 

  17. 17.

    17. A. Karma, Physical Review Letters, 2001, 87, 115701.

    CAS  Article  Google Scholar 

  18. 18.

    18. B. Echebarria, R. Folch, A. Karma and M. Plapp, Physical Review E, 2004, 70, 061604.

    Article  Google Scholar 

  19. 19.

    19. B. Nestler, H. Garcke and B. Stinner, Physical Review E, 2005, 71, 041609.

    Article  Google Scholar 

  20. 20.

    20. S. G. Kim, Acta Materialia, 2007, 55, 4391-4399.

    CAS  Article  Google Scholar 

  21. 21.

    21. P. Liu, Y. Ji, Z. Wang, C. Qiu, A. Antonysamy, L.-Q. Chen, X. Cui and L. Chen, Journal of Materials Processing Technology, 2018, 257, 191-202.

    CAS  Article  Google Scholar 

  22. 22.

    22. S. Sahoo and K. Chou, Additive manufacturing, 2016, 9, 14-24.

    CAS  Article  Google Scholar 

  23. 23.

    23. X. Gong and K. Chou, Jom, 2015, 67, 1176-1182.

    CAS  Article  Google Scholar 

  24. 24.

    Y. Xie, University of Leicester, 2013.

  25. 25.

    25. M. Ohno and K. Matsuura, Physical Review E, 2009, 79, 031603.

    Article  Google Scholar 

  26. 26.

    26. T. Mukherjee, W. Zhang and T. DebRoy, Computational Materials Science, 2017, 126, 360-372.

    CAS  Article  Google Scholar 

  27. 27.

    27. J.-H. Jeong, N. Goldenfeld and J. A. Dantzig, Physical Review E, 2001, 64, 041602.

    CAS  Article  Google Scholar 

  28. 28.

    28. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. M. Viggen, Springer International Publishing, 2017, 10, 978-973.

    Google Scholar 

  29. 29.

    29. M. Ohno, Physical Review E, 2012, 86, 051603.

    Article  Google Scholar 

  30. 30.

    30. S. G. Kim, W. T. Kim and T. Suzuki, Physical Review E, 1999, 60, 7186-7197.

    CAS  Article  Google Scholar 

  31. 31.

    31. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma and X. Tong, Journal of Computational Physics, 1999, 154, 468-496.

    CAS  Article  Google Scholar 

  32. 32.

    N. Provatas and K. Elder, Phase-field methods in materials science and engineering, John Wiley & Sons, 2011.

    Google Scholar 

  33. 33.

    33. A. Cartalade, A. Younsi and M. Plapp, Computers & Mathematics with Applications, 2016, 71, 1784-1798.

    Article  Google Scholar 

  34. 34.

    34. D. Sun, H. Xing, X. Dong and Y. Han, International Journal of Heat and Mass Transfer, 2019, 133, 1240-1250.

    Article  Google Scholar 

  35. 35.

    35. V. G. Ivanchenko, O. M. Ivasishin and S. L. Semiatin, Metallurgical and Materials Transactions B, 2003, 34, 911-915.

    CAS  Article  Google Scholar 

  36. 36.

    36. A. R. A. Dezfoli, W.-S. Hwang, W.-C. Huang and T.-W. Tsai, Scientific reports, 2017, 7, 41527.

    CAS  Article  Google Scholar 

  37. 37.

    37. W. S. Ping, L. D. Rong, G. J. Jie, L. C. Yun, S. Y. Qing and F. H. Zhi, Materials Science and Engineering: A, 2006, 426, 240-249.

    Article  Google Scholar 

  38. 38.

    38. J. C. Ramirez and C. Beckermann, Acta Materialia, 2005, 53, 1721-1736.

    CAS  Article  Google Scholar 

  39. 39.

    39. J. Li, Z. Wang, Y. Wang and J. Wang, Acta Materialia, 2012, 60, 1478-1493.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Key Research and Development Program of China No. 2017YFB1103700, the National Science Foundation of China Nos. 51575304 and 51674153.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hongbiao Dong or Tao Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 22, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Xie, Y., Yan, R. et al. A New Efficient Quantitative Multi-component Phase Field: Lattice Boltzmann Model for Simulating Ti6Al4V Solidified Dendrite Under Forced Flow. Metall Mater Trans B 50, 2487–2497 (2019). https://doi.org/10.1007/s11663-019-01669-y

Download citation