In Situ Observation of Acicular Ferrite Nucleation and Growth at Different Cooling Rate in Ti-Zr Deoxidized Steel

Manuscript submitted March 24, 2019.

Abstract

The effects of cooling rate on acicular ferrite (AF) nucleation, growth, and inclusion characteristics in Ti-Zr deoxidation steel were studied by utilizing the high temperature confocal laser scanning microscope (HT-CLSM). The results indicated that with the increase of cooling rate, the ferrite start nucleation temperature decreased, and the difference of first nucleation temperature between AF and ferrite side plate (FSP) reduced. When the cooling rate increased to 10.0 °C/s, AF and FSP simultaneously nucleated at 564.5 °C. In addition, the AF actual growth rate rose with the increase of cooling rate and reached 30.13 µm/s at 10.0 °C/s cooling rate. The AF ratio in microstructure increased first and then decreased with the cooling rate increase and was up to the maximum 45.83 pct at 1.0 °C/s cooling rate. For inclusion characteristics, cooling rates had no obvious effect on inclusion types, but had a great influence on inclusions size distribution. With the cooling rate increase, the inclusion average diameter reduced, and diminished to 1.39 µm at 10.0 °C/s cooling rate. Finally, the AF nucleation on the Ti-Zr-Mn-O-S + TiN inclusion could be explained by the low lattice misfit between ferrite and TiN that precipitated on the Ti-Zr-Mn-O-S inclusion surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    S. S. Babu, H. K. D. H. Bhadeshia:, Mater. T. JIM, 1991, vol. 32, pp. 679-88.

    CAS  Google Scholar 

  2. 2.

    S. Ohkita, Y. Horii: ISIJ Int., 1995, vol. 35, pp. 1170-82.

    CAS  Google Scholar 

  3. 3.

    B. W. Zhou, G. Q. Li, X. L. Wan, Y. Li, K. M. Wu: Met. Mater. Int., 2016, vol. 22, pp. 267-75.

    CAS  Google Scholar 

  4. 4.

    Y. Shao, C. X. Liu, Z. S. Yan, H. J. Li, Y. C. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 737-44.

    Google Scholar 

  5. 5.

    W. M. Mu, P. G. Jönsson, K. Nakajima: High Temp. Mat. Proc., 2017, vol. 36, pp. 309-25.

    CAS  Google Scholar 

  6. 6.

    D. S. Sarma, A. V. Karasev, P. G. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1063-74.

    CAS  Google Scholar 

  7. 7.

    X. F. Zhang, P. Han, H. Terasaki, M. Sato, Y. Komizo: J. Mater. Sci. Technol., 2012, vol. 28, pp. 241-48.

    Google Scholar 

  8. 8.

    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo: J. Mater. Sci., 2012, vol. 47, pp. 5524-28.

    CAS  Google Scholar 

  9. 9.

    M. M. Song, B. Song, S. H. Zhang, Z. B. Yang, Z. L. Xue, S. Q. Song, R. S. Xu, Z. B. Tong: J. Iron. Steel Res. Int., 2018, vol. 25, pp. 1033-42.

    Google Scholar 

  10. 10.

    Z. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, K. Nagai: ISIJ Int., 2007, vol. 47, pp. 1781-88.

    CAS  Google Scholar 

  11. 11.

    Q. Huang, X. H. Wang, M. Jiang, Z. Y. HU: Steel Res. Int., 2016, vol. 87, pp. 445-55.

    CAS  Google Scholar 

  12. 12.

    M. M. Song, B. Song, C. L. Hu, W. B. Xin, G. Y. Song: ISIJ Int., 2015 vol. 55, pp. 1468-73.

    CAS  Google Scholar 

  13. 13.

    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, E. Rahimi: Micron, 2013, vol. 45, pp. 107-14.

    CAS  Google Scholar 

  14. 14.

    J. Pu, S. F. Yu, Y. Y. Li: J. Alloy Compd., 2017, vol. 692, pp. 351-58.

    CAS  Google Scholar 

  15. 15.

    J. M. Gregg, H. K. D. H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739-48.

    CAS  Google Scholar 

  16. 16.

    Y. Morikage, K. Oi, F. Kawabata, K. Amano: Tetsu-to-Hagané, 1998, vol. 84, pp.510-15.

    CAS  Google Scholar 

  17. 17.

    W. Z. Mu, P. G. Jönsson, K. Nakajima: J. Mater. Sci., 2016, vol. 51, pp. 2168-80.

    CAS  Google Scholar 

  18. 18.

    J. H. Shim, Y. W. Cho, S. H. Chung, J. D. Shim, D. N. Lee: Acta Mater., 1999, vol. 47, pp. 2751-60.

    CAS  Google Scholar 

  19. 19.

    L. Cheng, C. Xu, L. L. Lu, L. Yu, K. M. Wu: J. Alloy Compd., 2018, vol. 742, pp. 112-22.

    CAS  Google Scholar 

  20. 20.

    W. Z. Mu, P. G. Jönsson, K. Nakajima: ISIJ Int., 2014, vol. 54, pp. 2907-16.

    CAS  Google Scholar 

  21. 21.

    I. Madariaga, J. L. Romero, I. Gutiérrez: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1003-15.

    CAS  Google Scholar 

  22. 22.

    X. B. Li, Y. Min, C. J. Liu, M. F. Jiang: Steel Res. Int., 2016, vol. 87, pp. 622-32.

    CAS  Google Scholar 

  23. 23.

    C. K. Lin, Y. C. Pan, Y. H. F. Su, G. R. Lin, W. S. Hwang, J. C. Kuo: Mater. Charact., 2018, vol. 141, 318-27.

    CAS  Google Scholar 

  24. 24.

    Z. Zhang, R. A. Farrar: Mater. Sci. Technol., 1996, vol. 12, pp. 237-60.

    CAS  Google Scholar 

  25. 25.

    W. Z. Mu, H. H. Mao, P. G. Jönsson, K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 311-19.

    CAS  Google Scholar 

  26. 26.

    B. Wen, B. Song, N. Pan, Q. Y. Hu, J. H. Mao: Ironmaking Steelmaking, 2011, vol. 38, pp. 577-83.

    CAS  Google Scholar 

  27. 27.

    S. H. Zhang, N. Hattori, M. Enomoto, T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301-09.

    CAS  Google Scholar 

  28. 28.

    B. L. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-95.

    Google Scholar 

  29. 29.

    M. Militzer, R. Pandi, E. B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1547-56.

    Google Scholar 

  30. 30.

    C. J. Shang, L. J. Hu, S. W. Yang, X. M. Wang, Y. T. Zhao, X. L. He: Acta Metall. Sin., 2005, vol. 41, pp. 471-76.

    CAS  Google Scholar 

  31. 31.

    G. Thewlis, J. A. Whiteman, D. J. Senogles: Mater. Sci. Technol., 1997, vol. 13, pp. 257-74.

    CAS  Google Scholar 

  32. 32.

    Y. C. Liu, D. J. Wang, F. Sommer, E. J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833-42.

    CAS  Google Scholar 

  33. 33.

    Y. J. Kang, S. H. Jeong, J. H. Kang, C. H. Lee: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2842-54.

    Google Scholar 

  34. 34.

    W. Z. Mu, P. Hedström, H. Shibata, P. G. Jönsson, K. Nakajima: JOM, 2018, vol. 70, pp. 2283-95.

    CAS  Google Scholar 

  35. 35.

    W. Z. Mu, N. Dogan, K. S. Coley: JOM, 2018, vol. 70, pp. 1199-09.

    CAS  Google Scholar 

  36. 36.

    T. Hanamura, H. Shibata, Y. Waseda, H. Nakajima, S. Torizuka, T. Takanashi, K. Nagai: ISIJ Int., 1999, vol. 39, pp. 1188-93.

    CAS  Google Scholar 

  37. 37.

    D. Zhang, H. Terasaki, Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-78.

    CAS  Google Scholar 

  38. 38.

    W. Z. Mu, H. Shibata, P. Hedström, P. G. Jönsson, K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 10-14.

    CAS  Google Scholar 

  39. 39.

    X. D. Zou, J. C. Sun, H. Matsuura, C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-73.

    Google Scholar 

  40. 40.

    M. Wakoh, T. Sawai, S. Mizoguchi: Tetsu-to-Hagané, 1996, vol. 82, pp. 593-98.

    CAS  Google Scholar 

  41. 41.

    X. L. Wan, K. M. Wu, G. Huang, R. Wei, L. Cheng: Int. J. Min. Met. Mater., 2014, vol. 21, pp. 878-85.

    CAS  Google Scholar 

  42. 42.

    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 447-58.

    Google Scholar 

  43. 43.

    I. deS. Bott, P. R. Rios: Scripta Mater., 1998, vol. 38, pp. 1269-74.

    CAS  Google Scholar 

  44. 44.

    J. S. Liu, J. Yanagimoto: ISIJ Int., 2007, vol. 47, pp. 1188-94.

    CAS  Google Scholar 

  45. 45.

    J. S. Byun, J. H. Shim, Y. W. Cho, D. N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-06.

    CAS  Google Scholar 

  46. 46.

    H. K. D. H. Bhadeshia, J. W. Christian: Metall. Mater. Trans. A, 1990, vol. 21, pp. 767-97.

    CAS  Google Scholar 

  47. 47.

    L. Cheng, K. M. Wu: Acta Mater., 2009, vol. 57, pp. 3754-62.

    CAS  Google Scholar 

  48. 48.

    M. M. Hosseinioun, G. Moeini: Mater. Test., 2016, vol. 58, pp. 848-59.

    CAS  Google Scholar 

  49. 49.

    K. M. Wu, Y. Inagawa, M. Enomoto: Mater. Charact., 2004, vol. 52, pp. 121-27.

    CAS  Google Scholar 

  50. 50.

    C. K. Lin, Y. C. Pan, W. S. Hwang, Y. C. Fang, Y. H. Su, G. R. Lin, Y. F. Wu: Ironmaking Steelmaking, 2019, vol. 46, pp. 176-83.

    CAS  Google Scholar 

  51. 51.

    N. Kikuchi, S. Nabeshima, T. Yamashita, Y. Kishimoto, S. Sridhar, T. Nagasaka: ISIJ Int., 2011, vol. 51, pp. 2019-28 .

    CAS  Google Scholar 

  52. 52.

    S. S. Babu: Curr. Opin. Solid. St. M., 2004, vol. 8, pp. 267-78.

    CAS  Google Scholar 

  53. 53.

    H. H. Jin, J. H. Shim, Y. W. Cho, H. C. Lee: ISIJ Int., 2003, vol. 43, pp. 1111-13.

    CAS  Google Scholar 

  54. 54.

    Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto: ISIJ Int., 1994, vol. 34, pp. 829-35

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the National Natural Science Foundation of China (No. 51874081, 51574063) and Fundamental Research Funds for the Central Universities (N150204012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongping Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhan, D., Lei, H. et al. In Situ Observation of Acicular Ferrite Nucleation and Growth at Different Cooling Rate in Ti-Zr Deoxidized Steel. Metall Mater Trans B 50, 2536–2546 (2019). https://doi.org/10.1007/s11663-019-01668-z

Download citation