Evolutions of the Micro- and Macrostructure and Tensile Property of Cu-15Ni-8Sn Alloy During Electromagnetic Stirring-Assisted Horizontal Continuous Casting

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The present study investigates the evolution of the micro- and macrostructure and tensile property of the Cu-15Ni-8Sn (weight percent) alloy prepared by horizontal continuous casting and electromagnetic stirring (EMS). The results show that the application of EMS is beneficial for grain refinement and for microstructure transformation from the dendrite to the rosette structure and that it leads to a significant improvement in the tensile property. The forced flow induced by EMS homogenizes the temperature field ahead of the solid-liquid interface, disturbing the heat flow direction and resulting in the columnar to equiaxed transition. The grain refinement under different electromagnetic stirring frequencies is mainly derived from the homogenization of the temperature and the remelting of dendritic arms. In addition, the evolution of the tensile property with and without EMS is discussed from the perspective of fracture mode and fine-grain strengthening.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    1.R.K. Ray and S.C. Narayanan: Metall. Trans. A, 1982, vol. 13A, pp. 565–73.

    Article  Google Scholar 

  2. 2.

    2.J.C. Zhao and M.R. Notis: Acta Mater., 1998, vol. 46, pp. 4203–18.

    CAS  Article  Google Scholar 

  3. 3.

    3.J.C. Rhu and S.S. Kim: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2649–57.

    CAS  Article  Google Scholar 

  4. 4.

    4.B. Zhang, J. Cui, and G. Lu: Mater. Sci. Eng. A, 2003, vol. 355, pp. 325–30.

    Article  Google Scholar 

  5. 5.

    5.J.P. Martins, A.L.M. Carvalho, and A.F. Padilha: J. Mater. Sci., 2009, vol. 44, pp. 2966–76.

    CAS  Article  Google Scholar 

  6. 6.

    6.M.T. Clavaguera-Mora, C. Comas, J.L. Touron, M. García, O. Guixà, and N. Clavaguera: J. Mater. Sci., 1999, vol. 34, pp. 4347–50.

    CAS  Article  Google Scholar 

  7. 7.

    7.X. Li, Z. Guo, X. Zhao, W. Bi, F. Chen, and T. Li: Mater. Sci. Eng. A, 2007, vol. 460, pp. 648–51.

    Article  Google Scholar 

  8. 8.

    8.A.A. Tzavaras and H.D. Brody: JOM, 1984, vol. 36, pp. 31–37.

    CAS  Article  Google Scholar 

  9. 9.

    9.L. Deyong, R. Tremblay, and R. Angers: Mater. Sci. Eng. A, 1990, vol. 124, pp. 223–31.

    Article  Google Scholar 

  10. 10.

    10.Q. Dong, J. Zhang, B. Wang, and X. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81–88.

    CAS  Article  Google Scholar 

  11. 11.

    11.G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Härtwig, and J. Baruchel: Mater. Sci. Eng. A, 2005, vol. 413, pp. 384–88.

    Article  Google Scholar 

  12. 12.

    12.S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 413, pp. 211–16.

    Article  Google Scholar 

  13. 13.

    13.W. Jin, F. Bai, T. Li, and G. Yin: Mater. Lett., 2008, vol. 62, pp. 1585–88.

    CAS  Article  Google Scholar 

  14. 14.

    14.V. Metan, K. Eigenfeld, D. Räbiger, M. Leonhardt, and S. Eckert: J. Alloys Compd., 2009, vol. 487, pp. 163–72.

    CAS  Article  Google Scholar 

  15. 15.

    15.B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55–65.

    Article  Google Scholar 

  16. 16.

    16.T. Campanella, C. Charbon, and M. Rappaz: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3201–10.

    CAS  Article  Google Scholar 

  17. 17.

    17.A. Das, S. Ji, and Z. Fan: Acta Mater., 2002, vol. 50, pp. 4571–85.

    CAS  Article  Google Scholar 

  18. 18.

    18.E.O. Hall: Proc. Phys. Soc., 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  19. 19.

    19.N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  20. 20.

    20.H. Kato: Mater. Sci. Eng. A, 2015, vol. 639, pp. 540–49.

    CAS  Article  Google Scholar 

  21. 21.

    21.M. Li, T. Tamura, N. Omura, and K. Miwa: J. Alloys Compd., 2010, vol. 494, pp. 116–22.

    CAS  Article  Google Scholar 

  22. 22.

    22.H. Zhang, Y.Z. He, X.M. Yuan, and P. Ye: Appl. Surf. Sci., 2010, vol. 256, pp. 5837–42.

    Article  Google Scholar 

  23. 23.

    23.J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    CAS  Article  Google Scholar 

  24. 24.

    24.A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.

    CAS  Article  Google Scholar 

  25. 25.

    25.R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2515–24.

    CAS  Article  Google Scholar 

  26. 26.

    26.X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321–32.

    CAS  Article  Google Scholar 

  27. 27.

    27.D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–92.

    CAS  Article  Google Scholar 

  28. 28.

    28.E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, and R.H. Mathiesen: Acta Mater., 2014, vol. 70, pp. 228–39.

    CAS  Article  Google Scholar 

  29. 29.

    29.P.P. Sahoo, A. Kumar, J. Halder, and M. Raj: ISIJ Int., 2009, vol. 49, pp. 521–28.

    CAS  Article  Google Scholar 

  30. 30.

    30.H.K. Moffatt: Phys. Fluids, 1991, vol. 3, pp. 1336–43.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (Grant Nos. 2016YFB0301401 and 2016YFB0300401), the National Natural Science Foundation of China (Grant Nos. U1860202, U1732276, 50134010, and 51704193), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 13JC14025000 and 15520711000).

Author information



Corresponding authors

Correspondence to Yunbo Zhong or Tianxiang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 5, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhou, B., Zhong, J. et al. Evolutions of the Micro- and Macrostructure and Tensile Property of Cu-15Ni-8Sn Alloy During Electromagnetic Stirring-Assisted Horizontal Continuous Casting. Metall Mater Trans B 50, 2111–2120 (2019). https://doi.org/10.1007/s11663-019-01664-3

Download citation