Insight into the Relationship Between Viscosity and Structure of CaO-SiO2-MgO-Al2O3 Molten Slags


This article elucidates the quantitative relationship between viscosity and structure in a basic slag system of CaO-SiO2-MgO-Al2O3 and focuses on the role of Al2O3. Slag viscosity was measured by the rotating cylinder method, and structural information was obtained using Fourier transformation infrared, Raman and magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The results show that, as the Al2O3 content increased, slag viscosity increased initially and decreased afterwards, directly indicating that Al2O3 had an amphoteric effect on slag viscosity. The Raman spectra verified that with increasing Al2O3 content, the concentrations of Q0(Si) and Q2(Si) decreased first and then increased, while that of Q1(Si) kept increasing and that of Q3(Si) increased first and then decreased. The 27Al MAS-NMR spectra proved that the mole ratios of AlO5 and AlO6 to AlO4 kept increasing with the increase of Al2O3 content, and, overall, Al2O3 changed from a network former to a network modifier. The relationship between the viscosity and structure of the molten slags was further analyzed quantitatively based on the modified (NBO/T), denoted as (NBO/T)′, and we found a fine linear correlation between the logarithm of viscosity and (NBO/T)′. Moreover, the variations of thermodynamic properties of this system also indirectly supported the present experimental results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    M. Yellishetty, and G.M. Mudd: J. Clean Prod., 2014, vol. 84, pp. 400-10.

    Article  Google Scholar 

  2. 2.

    Z. Yan, X. Lv, J. Zhang, Y. Qin, and C. Bai: Can. Metall. Q., 2016, vol. 55, pp. 186-94.

    CAS  Article  Google Scholar 

  3. 3.

    M. Thangavelu, and A.K. Bhattacharya: J. Indian Soc. Remote Sens., 2011, vol. 39, pp. 473-83.

    Article  Google Scholar 

  4. 4.

    D. Liu, H. Liu, J. Zhang, Z. Liu, X. Xue, G. Wang, and Q. Kang: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 991-98.

    CAS  Article  Google Scholar 

  5. 5.

    A.S. Mehta, and V. Sahajwalla: Scand. J. Metall., 2010, vol. 29, pp. 17-29.

    Article  Google Scholar 

  6. 6.

    W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 735-41.

    CAS  Article  Google Scholar 

  7. 7.

    N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-16.

    CAS  Article  Google Scholar 

  8. 8.

    Y. Gao, S. Wang, C. Hong, X. Ma, and Y. Fu: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353-62.

    CAS  Article  Google Scholar 

  9. 9.

    J.F. Stebbins, E.V. Dubinsky, K. Kanehashi, and K.E. Kelsey: Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 910-25.

    CAS  Article  Google Scholar 

  10. 10.

    B. Hehlen, and D.R. Neuville: J. Phys. Chem. B, 2015, vol. 119, pp. 4093-98.

    CAS  Article  Google Scholar 

  11. 11.

    C.L. Losq, D.R. Neuville, P. Florian, G.S. Henderson, and D. Massiot: Geochim. Cosmochim. Acta, 2014, vol. 126, pp. 495-517.

    Article  Google Scholar 

  12. 12.

    Z. Wang, Y. Sun, S. Sridhar, Z. Mei, G. Min, and Z. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 537-41.

    Article  Google Scholar 

  13. 13.

    Y. Lu, R. Shan, X. Wang, Q. Liu, L. Dong, J. Yang, and J. Liu: Steel Res. Int., 2016, vol. 87, pp. 241-49.

    Article  Google Scholar 

  14. 14.

    G.H. Kim, and I. Sohn: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1530-37.

    CAS  Article  Google Scholar 

  15. 15.

    F. Cong, M. Chu, J. Tang, Y. Tang, and Z. Liu: Steel Res. Int., 2016, vol. 87, pp. 1274-83.

    Article  Google Scholar 

  16. 16.

    H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, J.M. Dong, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44, pp. 5-12.

    Article  Google Scholar 

  17. 17.

    Y. Sun, H. Wang, and Z. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 677-87.

    Article  Google Scholar 

  18. 18.

    J.H. Park, J.M. Dong, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-75.

    CAS  Article  Google Scholar 

  19. 19.

    C. Sun, X. Liu, J. Li, X. Yin, S. Song, and Q. Wang: ISIJ Int., 2017, vol. 57, pp. 578-82.

    Google Scholar 

  20. 20.

    J.H. Park, H. Kim, and J.M. Dong: Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-53.

    CAS  Article  Google Scholar 

  21. 21.

    A. Aronne, S. Esposito, and P. Pernice: Mater. Chem. Phys., 1997, vol. 51, pp. 163–68.

    CAS  Article  Google Scholar 

  22. 22.

    F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and P. Layrolle: Key Eng. Mater., 2008, vol. 361-363, pp. 825-28.

    Google Scholar 

  23. 23.

    H. Li, H. Li, and W. Li: Coal Sci. Technol., 2006, vol. 34, pp. 24–26.

    CAS  Google Scholar 

  24. 24.

    B.N. Roy: J. Am. Ceram. Soc., 2010, vol. 73, pp. 846-55.

    Article  Google Scholar 

  25. 25.

    N.J. Clayden, S. Esposito, A. Aronne, and P. Pernice: J. Non-Cryst. Solids, 1999, vol. 258, pp. 11-19.

    CAS  Article  Google Scholar 

  26. 26.

    Y. Sun, and Z. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1549-54.

    Article  Google Scholar 

  27. 27.

    P. Lu, W. Xia, H. Jiang, and H. Zhao: Bull. Chin. Ceram. Soc., 2015, vol. 34, pp. 878-87.

    CAS  Google Scholar 

  28. 28.

    Y. Jiang, X. Lin, K. Ideta, H. Takebe, M. Jin, S.H. Yoon, and I. Mochida: J. Ind. Eng. Chem., 2014, vol. 20, pp. 1338-45.

    CAS  Article  Google Scholar 

  29. 29.

    S. Markovic, V. Dondur, and R. Dimitrijevic: J. Mol. Struct., 2003, vol. 654, pp. 223-34.

    CAS  Article  Google Scholar 

  30. 30.

    I. Daniel, P. Gillet, B.T. Poe, and P.F. Mcmillan: Phys. Chem. Miner., 1995, vol. 22, pp. 74-86.

    CAS  Article  Google Scholar 

  31. 31.

    J. Stebbins: Chem. Geol., 2013, vol. 346, pp. 34-46.

    CAS  Article  Google Scholar 

  32. 32.

    T. Takaishi, M. Kato, and K. Itabashi: J. Phys. Chem., 1994, vol. 98, pp. 5742–43.

    CAS  Article  Google Scholar 

  33. 33.

    G. Jiang, J. You, Y. Wu, H. Hou, and H. Chen: Geol.-Geochem., 2003, vol. 31, pp. 80–86.

    CAS  Google Scholar 

  34. 34.

    W. Wang, J. Tan, D. Zhang, Q. Wang, J. Tian, and S. Tian: J. Earth Sci., 2004, vol. 29, pp. 39–44.

    CAS  Google Scholar 

  35. 35.

    Y. Wu, G. Jiang, J. You, H. Hou, and H. Chen: Acta Phys. Sin., 2005, vol. 54, pp. 961-66.

    CAS  Google Scholar 

  36. 36.

    X. Tang, M. Guo, X. Wang, Z. Zhang, and M Zhang: J. Univ. Sci. Technol. Beijing, 2010, vol. 32, pp. 1542-46.

    CAS  Google Scholar 

  37. 37.

    T. Wu, S. He, Y. Liang, and Q. Wang: J. Non-Cryst. Solids, 2015, vol. 411, pp. 145-51.

    CAS  Article  Google Scholar 

  38. 38.

    V. L. Stolyarova: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1373-77.

    CAS  Article  Google Scholar 

  39. 39.

    Q. Shu, P. Li, X. Zhang, and K. Chou: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1-6.

    Google Scholar 

  40. 40.

    A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 911-15.

    CAS  Article  Google Scholar 

Download references


Support from the National Key Research and Development Project of China (2018YFC1901505) is acknowledged. This work was also supported by the National Natural Science Foundation of China (51672006 and 51472006) and the Ministry of Land and Resources Public Welfare Industry Research Project (201511062-02).

Author information



Corresponding authors

Correspondence to Yongqi Sun or Xidong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 9, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, H., Sun, Y. et al. Insight into the Relationship Between Viscosity and Structure of CaO-SiO2-MgO-Al2O3 Molten Slags. Metall Mater Trans B 50, 2930–2941 (2019).

Download citation