Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres


The microstructures of porous magnetite formed on gaseous reduction of dense hematite have been examined using high-resolution scanning electron microscopy. It has been shown that cellular pores are formed on reduction in the temperature range 573 K to 973 K (300 °C to 700 °C). Dendritic shaped gas pores are formed on reduction at temperatures between 1073 K and 1273 K (800 °C and 1000 °C). The apparent chemical reaction rate constant for the reduction of hematite to magnetite in CO/CO2 gas mixtures has been derived from measurements of product thickness against reaction time; the rate constant is described by the relation φCO = 0.232exp(76,000/RT) µm s−1 atm−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    L. Von Bogdandy and H.G. Engel, The Reduction of Iron Ores, Springer, Berlin (1968).

    Google Scholar 

  2. 2.

    L. Lu, Iron Ore Mineralogy, Processing and Environmental Sustainability, Woodhead Publ., 2015

    Google Scholar 

  3. 3.

    H. Brill-Edwards, B.L. Daniell, and R.L. Sammer, J Iron Steel Inst., 1965, vol.203, pp. 365-368.

    Google Scholar 

  4. 4.

    A.V. Bradshaw and A. G. Matyas, Metall. Trans. B, 1976, vol. 7B, pp. 81-87.

    CAS  Article  Google Scholar 

  5. 5.

    J.R. Porter and P.R. Swann, Ironmaking Steelmaking, 1977, vol. 5, pp. 300-307.

    Google Scholar 

  6. 6.

    P.R. Swann and N.J. Tighe, Metall. Trans. B, 1977, vol. 8B, pp. 479-487.

    CAS  Article  Google Scholar 

  7. 7.

    P.C. Hayes and P. Grieveson, Metall. Trans. B., 1981, vol. 12B, pp. 579-587.

    CAS  Article  Google Scholar 

  8. 8.

    P Baguley, DH Sohn and PC Hayes, Metall. Trans B, 1983, vol. 14, pp. 513–514.

    CAS  Article  Google Scholar 

  9. 9.

    M. El-Tabirou, B. Dupré, and C. Gleitzer, Metall. Trans. B, 1988, vol. 19B(2), pp. 311-317.

    Article  Google Scholar 

  10. 10.

    H. El Abdouni, A. Modaressi and J.J. Heizmann, Reactivity of Solids, 1988, vol. 5(2–3), pp. 129-138.

    Article  Google Scholar 

  11. 11.

    Simmonds T. and P.C. Hayes, Metall. Mater. Trans E, 2017, vol. 4(2–4), pp. 101–113.

    CAS  Google Scholar 

  12. 12.

    P.C. Hayes and P. Grieveson, Metall. Trans. B., 1981, vol. 12B, pp. 319-326.

    CAS  Article  Google Scholar 

  13. 13.

    F. Adam, B. Dupre and C. Gleizer, Reactivity of Solids 1988, vol 5(2), pp. 101-114.

    CAS  Article  Google Scholar 

  14. 14.

    F. Adam, B. Dupre and C. Gleizer, Solid State Ionics, 1989, vol.32/33, pp. 330-333.

    Article  Google Scholar 

  15. 15.

    J. Yu, Y. Han, Y. Li, P. Gao and W. Li, Minerals, 2017, vol.7, pp.209-220.

    Article  Google Scholar 

  16. 16.

    S.P. Matthew, T.R. Cho and P.C. Hayes, Metall. Trans. B, 1990, vol.21B, pp. 733-741.

    CAS  Article  Google Scholar 

  17. 17.

    T. Hidayat, A. Rhamdhani, E. Jak and P.C. Hayes, Metall. Mater. Trans. B, 2008, vol. 40B, pp. 474 -489.

    Google Scholar 

  18. 18.

    H.Y. Sohn and D-Q. Fan, Metall. Mater. Trans. 2017, vol.48B, pp.1827-1832.

    Article  Google Scholar 

  19. 19.

    M. Bahgat, Materials Letters, 2007, vol. 61, pp. 339–342.

    CAS  Article  Google Scholar 

  20. 20.

    P.C. Hayes, Steel Research International, 2011, vol.82, pp.480-493.

    CAS  Article  Google Scholar 

  21. 21.

    H.Y. Sohn, Metall. Materials Trans. B., 2016, vol. 47B, pp.1203-1208.

    Article  Google Scholar 

  22. 22.

    K. A. Jackson and J. D. Hunt, Trans. AIME, 1966, vol. 236 pp. 1129-1142.

    CAS  Google Scholar 

  23. 23.

    P.C. Hayes, Metall. Mater. Trans. B, 2011, vol.41B , pp.19–34.

    Google Scholar 

Download references


The authors would like to acknowledge financial support for this project from the Australian Research Council (ARC) Discovery program. Thanks to Suping Huang and Hong Wee Kor, Pyrometallurgy Innovation Centre (PYROSEARCH), for their support for the experimental work. The authors also acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland.

Author information



Corresponding author

Correspondence to Peter C. Hayes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, R., Simmonds, T. et al. Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres. Metall Mater Trans B 50, 2612–2622 (2019). https://doi.org/10.1007/s11663-019-01659-0

Download citation