A Study on the Interfacial Reaction Between Liquid Iron and MgO-Based Refractories Containing TiO2


The interfacial reactions between liquid iron and MgO-based refractories were investigated based on the TiO2 concentration values. Substrates comprising MgO, MgO-TiO2 (MT), MgO-Al2O3 (MA), and MgO-Al2O3, at loadings of 3, 6, 9, 12, and 15 wt pct TiO2 (MAT3-15), were reacted with liquid iron at 1823 K by using the sessile drop technique. Microscopic analysis by SEM/EDX and the associated thermochemical calculations by Factsage 7.0™ confirmed the reaction mechanisms of different refractory materials. MgO and MT showed higher resistance against liquid iron penetration compared with MA and MAT3-15, which was attributed to the formation of a magnesiowustite (MO (M = Fe, Mg)) layer formed at the interfaces. Increasing the levels of TiO2 up to 6 wt pct contributed to the denser microstructure of MA. However, the contact angle was lowest for 9 wt pct of TiO2 and then gradually increased up to 15 wt pct. Chemical reactions generating a liquid slag phase contributed to the fluctuations in contact angle with respect to TiO2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A.W. Cramb: in: Impurities in Engineered Materials: Impact, Reliability and Control, J.W.C.L. Briant, ed., Marcel-Dekker, New York, 1999.

  2. 2.

    P.R. Scheller and Q. Shu: Steel Res. Int., 2014, vol. 85, pp. 1310–6.

    CAS  Article  Google Scholar 

  3. 3.

    W.A. Calvo, P. Pena, and A.G. Tomba-Martinez: Ceram. Int., 2019, vol. 45, pp. 185–96.

    CAS  Article  Google Scholar 

  4. 4.

    W.E. Lee and S. Zhang: Int. Mater. Rev., 1999, vol. 44, pp. 77–104.

    CAS  Article  Google Scholar 

  5. 5.

    H. Um, K. Lee, J. Choi, and Y. Chung: ISIJ Int., 2012, vol. 52, pp. 62–7.

    CAS  Article  Google Scholar 

  6. 6.

    J. Jeon, Y. Kang, J.H. Park, and Y. Chung: Ceram. Int., 2017, vol. 43, pp. 15074–9.

    CAS  Article  Google Scholar 

  7. 7.

    H.S. Park, Y. Kim, S. Kim, T. Yoon, Y. Kim, and Y. Chung: Ceram. Int., 2018, vol. 44, pp. 17585–91.

    CAS  Article  Google Scholar 

  8. 8.

    J. Park, J. Jeon, K. Lee, J.H. Park, and Y. Chung: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2016, vol. 47, pp. 1832–38.

  9. 9.

    L. Krietz, in Refractories Handbook, C.A. Schanht, ed., Marcel Dekker, New York, 2004.

  10. 10.

    H. Wang, R. Caballero, and D. Sichen: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 789–97.

    CAS  Article  Google Scholar 

  11. 11.

    D. Schmidtmeier, G. Büchel, and A. Buhr: Ceram. Mater., 2009, vol. 61, pp. 223–7

    CAS  Google Scholar 

  12. 12.

    M. Guo, P.T. Jones, S. Parada, E. Boydens, J. V. Dyck, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3831–43.

    CAS  Article  Google Scholar 

  13. 13.

    S. Zhang, N.J. Marriott, and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1037–47.

    CAS  Article  Google Scholar 

  14. 14.

    S.H. Heo, K. Lee, and Y. Chung: Trans. Nonferrous Met. Soc. China (English Ed., 2012, vol. 22, pp. 870–75.

  15. 15.

    Z. Liu, J. Yu, X. Yang, E. Jin, and L. Yuan: Materials (Basel). https://doi.org/10.3390/ma11060883.

  16. 16.

    A. Mittal, G.J. Albertsson, G.S. Gupta, S. Seetharaman, and S. Subramanian: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45, pp. 338–44.

  17. 17.

    H. Um, K. Lee, K.-Y. Kim, G. Shin, and Y. Chung: Ironmak. Steelmak., 2014, vol. 41, pp. 31–7.

    CAS  Article  Google Scholar 

  18. 18.

    M.K. Cho, G.G. Hong, and S.K. Lee: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1783–90.

    CAS  Article  Google Scholar 

  19. 19.

    J.S. Park, D.H. Kim, and J.H. Park: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1974–81.

    CAS  Article  Google Scholar 

  20. 20.

    S. Yilmaz: Ironmak. Steelmak., 2006, vol. 33, pp. 151–6.

    CAS  Article  Google Scholar 

  21. 21.

    E.Y. Sako, M.A.L. Braulio, A.P. Luz, E. Zinngrebe, and V.C. Pandolfelli: J. Am. Ceram. Soc., 2013, vol. 96, pp. 3252–7.

    CAS  Google Scholar 

  22. 22.

    K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, and H.T. Tsai: ISIJ Int., 2005, vol. 45, pp. 619–33.

    CAS  Article  Google Scholar 

  23. 23.

    J.H. Zietsman and P.C. Pistorius: Miner. Eng., 2006, vol. 19, pp. 262–79.

    CAS  Article  Google Scholar 

  24. 24.

    P.C. Pistorius: J. South African Inst. Min. Metall., 2003, vol. 103, pp. 509–14

    CAS  Google Scholar 

  25. 25.

    P.C. Pistorius and C. Coetzee: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2003, vol. 34, pp. 581–88.

  26. 26.

    Y. Morizane, B. Ozturk, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1999, vol. 30, pp. 29–43.

  27. 27.

    H. Park, J.Y. Park, G.H. Kim, I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150–6.

    CAS  Article  Google Scholar 

  28. 28.

    S.-J. Nam, Y.-B. Kang, S.-M. Jung, and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 1779–85.

    CAS  Article  Google Scholar 

  29. 29.

    R. Sarkar and G. Bannerjee: J. Eur. Ceram. Soc., 2000, vol. 20. pp. 2133–41.

    CAS  Article  Google Scholar 

  30. 30.

    S. Maitra, S. Das, and A. Sen: Ceram. Int., 2007, vol. 33, pp. 239–43.

    CAS  Article  Google Scholar 

  31. 31.

    M.A.L. Brauliow and V.C. Pandolfelli: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2981–5.

    Article  Google Scholar 

  32. 32.

    S.H. Badiee and S. Otroj: Ceram. - Silikaty, 2011, vol. 55, pp. 319–325.

    CAS  Google Scholar 

  33. 33.

    W.J. Yuan, C.J. Deng, and H.X. Zhu: Mater. Chem. Phys., 2015, vol. 162, pp. 724–33.

    CAS  Article  Google Scholar 

  34. 34.

    www.factsage.com, version 7.2. Accessed April 2019.

  35. 35.

    W.S. Rasband: ImageJ, US National Institutes of Health, Bethesda, MD, 1997–2018, https://imagej.nih.gov/ij/.

  36. 36.

    V. Stahleisen and V.D. Eisenhüttenleute: Slag Atlas, Verlag Stahleisen, Dusseldorf, 1995.

  37. 37.

    C. Xuan, H. Shibata, S. Sukenaga, P. G. Jönsson, K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1882-90.

    CAS  Article  Google Scholar 

  38. 38.

    C. Xuan, A. Karasev, H. Shibata, and P.G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 765–69.

  39. 39.

    N. Eustatahopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Oxford, 1999.

Download references


The research was supported by the Basic Research Project (GP2017-025) of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science, ICT, and Future Planning of Korea.

Author information



Corresponding author

Correspondence to Hyunsik Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Kim, S., Kim, M. et al. A Study on the Interfacial Reaction Between Liquid Iron and MgO-Based Refractories Containing TiO2. Metall Mater Trans B 50, 2251–2258 (2019). https://doi.org/10.1007/s11663-019-01656-3

Download citation