A Kinetic Study Investigating the Carbothermic Recovery of Chromium from a Stainless-Steel Slag

Abstract

In 2018, the stainless-steel industry produced > 10 million tons of slag, which for the most part was landfilled because of chromium oxide contamination. Long-term studies indicate a possible formation of soluble hexavalent chromium, which is classified as carcinogenic. Recent research focuses on the development of a treatment technology to recover chromium from the slag into a ferroalloy, producing an oxidic material that can be utilized in the construction industry. To date, there has been no literature dealing with the kinetics of a carbothermic treatment process to result in a model to predict the necessary treatment time. The present article fills this gap by investigating the reduction kinetics of chromium oxide of a process close to practical applications. Based on experimental measurements, a model has been developed to predict the necessary treatment time to reach a specific final chromium concentration as a function of the starting concentration and required process temperature in the range between 1600 °C and 1700 °C. Finally, presented findings can serve as a guideline to develop kinetic models in similar pyrometallurgical recovery processes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    ISSF: Stainless Steel in Figures 2019, http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf. Accessed 24 Jun 2019

  2. 2.

    G. Stubbe, G. Harp, D. Schmidt, and M. Sedlmeier: Stahl Eisen, 2011, vol. 131, pp. 45–50.

    CAS  Google Scholar 

  3. 3.

    D. Durinck, F. Engström, S. Arnout, J. Heulens, P. T. Jones, B. Björkman, B. Blanpain, P. Wollants: Resour. Conserv. Recycl., 2008, 52, 1121–31.

    Article  Google Scholar 

  4. 4.

    D. Mudersbach, M. Kuehn, J. Geiseler, and K. Koch: Slag Valorisation Symp., eds. P.T. Jones, D. Geysen, M. Guo, and B. Blanpain, 2009.

  5. 5.

    B. Adamczyk, R. Brenneis, C. Adam, and D. Mudersbach: Steel Res. Int., 2010, vol. 81, pp. 1078–83.

    CAS  Article  Google Scholar 

  6. 6.

    T. Nakasuga, K. Nakashima, and K. Mori: ISIJ Int., 2004, vol. 44, pp. 665–72.

    CAS  Article  Google Scholar 

  7. 7.

    E. Shibata, S. Egawa, and T. Nakamura: ISIJ Int., 2002, vol. 42, pp. 609–13.

    CAS  Article  Google Scholar 

  8. 8.

    B. Arh, F. Vode, F. Tehovnik, and J. Burja: Metalurgija, 2015, vol. 54, pp. 368–70.

    Google Scholar 

  9. 9.

    G. Ye, E. Burstrom, M. Kuhn, and J. Piret: Scand. J. Metall., 2003, vol. 32, pp. 7–14.

    CAS  Article  Google Scholar 

  10. 10.

    A. Fleischanderl, U. Gennari, and A. Ilie: Ironmaking Steelmaking, 2004, vol. 31, pp. 444–49.

    CAS  Article  Google Scholar 

  11. 11.

    M. Mortimer and P. Taylor: Chemical kinetics and mechanism, Royal Society of Chemistry : Open University, Cambridge, UK, 2002. pp. 35-36 & 65–66

    Google Scholar 

  12. 12.

    P. W. Atkins and J. de Paula: Atkins’ physical chemistry, 10th ed., Oxford University Press, Oxford, 2014. pp. 788–89

    Google Scholar 

  13. 13.

    T. Mori, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1387–93.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Leuchtenmüller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 14, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leuchtenmüller, M., Antrekowitsch, J. & Steinlechner, S. A Kinetic Study Investigating the Carbothermic Recovery of Chromium from a Stainless-Steel Slag. Metall Mater Trans B 50, 2221–2228 (2019). https://doi.org/10.1007/s11663-019-01649-2

Download citation