Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2221–2228 | Cite as

A Kinetic Study Investigating the Carbothermic Recovery of Chromium from a Stainless-Steel Slag

  • Manuel LeuchtenmüllerEmail author
  • Jürgen Antrekowitsch
  • Stefan Steinlechner


In 2018, the stainless-steel industry produced > 10 million tons of slag, which for the most part was landfilled because of chromium oxide contamination. Long-term studies indicate a possible formation of soluble hexavalent chromium, which is classified as carcinogenic. Recent research focuses on the development of a treatment technology to recover chromium from the slag into a ferroalloy, producing an oxidic material that can be utilized in the construction industry. To date, there has been no literature dealing with the kinetics of a carbothermic treatment process to result in a model to predict the necessary treatment time. The present article fills this gap by investigating the reduction kinetics of chromium oxide of a process close to practical applications. Based on experimental measurements, a model has been developed to predict the necessary treatment time to reach a specific final chromium concentration as a function of the starting concentration and required process temperature in the range between 1600 °C and 1700 °C. Finally, presented findings can serve as a guideline to develop kinetic models in similar pyrometallurgical recovery processes.



  1. 1.
  2. 2.
    G. Stubbe, G. Harp, D. Schmidt, and M. Sedlmeier: Stahl Eisen, 2011, vol. 131, pp. 45–50.Google Scholar
  3. 3.
    D. Durinck, F. Engström, S. Arnout, J. Heulens, P. T. Jones, B. Björkman, B. Blanpain, P. Wollants: Resour. Conserv. Recycl., 2008, 52, 1121–31.CrossRefGoogle Scholar
  4. 4.
    D. Mudersbach, M. Kuehn, J. Geiseler, and K. Koch: Slag Valorisation Symp., eds. P.T. Jones, D. Geysen, M. Guo, and B. Blanpain, 2009.Google Scholar
  5. 5.
    B. Adamczyk, R. Brenneis, C. Adam, and D. Mudersbach: Steel Res. Int., 2010, vol. 81, pp. 1078–83.CrossRefGoogle Scholar
  6. 6.
    T. Nakasuga, K. Nakashima, and K. Mori: ISIJ Int., 2004, vol. 44, pp. 665–72.CrossRefGoogle Scholar
  7. 7.
    E. Shibata, S. Egawa, and T. Nakamura: ISIJ Int., 2002, vol. 42, pp. 609–13.CrossRefGoogle Scholar
  8. 8.
    B. Arh, F. Vode, F. Tehovnik, and J. Burja: Metalurgija, 2015, vol. 54, pp. 368–70.Google Scholar
  9. 9.
    G. Ye, E. Burstrom, M. Kuhn, and J. Piret: Scand. J. Metall., 2003, vol. 32, pp. 7–14.CrossRefGoogle Scholar
  10. 10.
    A. Fleischanderl, U. Gennari, and A. Ilie: Ironmaking Steelmaking, 2004, vol. 31, pp. 444–49.CrossRefGoogle Scholar
  11. 11.
    M. Mortimer and P. Taylor: Chemical kinetics and mechanism, Royal Society of Chemistry : Open University, Cambridge, UK, 2002. pp. 35-36 & 65–66Google Scholar
  12. 12.
    P. W. Atkins and J. de Paula: Atkins’ physical chemistry, 10th ed., Oxford University Press, Oxford, 2014. pp. 788–89Google Scholar
  13. 13.
    T. Mori, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1387–93.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Manuel Leuchtenmüller
    • 1
    Email author
  • Jürgen Antrekowitsch
    • 1
  • Stefan Steinlechner
    • 1
  1. 1.Chair of Nonferrous MetallurgyMontanuniversitaet LeobenLeobenAustria

Personalised recommendations