Structure and Reactivity of Low-Rank Coal Chars Prepared from Fluidized Bed and Moving Bed Pyrolyzers and the Potential for Using Them in Pulverized Coal Injection (PCI)

Abstract

Utilizing pyrolysis chars as the injection fuel in a blast furnace can reduce the dependence on high-quality pulverized coal injection (PCI) coal. In this study, the physical properties and reaction characteristics of chars prepared from two different industrial-scale pyrolyzers (fluidized bed and moving bed) are investigated. The results reveal remarkable component segregation in the char particles with different particle sizes. The properties of large-size char particles are found to better satisfy the PCI fuel requirement in a blast furnace. Compared with PCI coal, the char particles exhibit a rough surface, well-developed pore structure, and less-ordered chemical structure of carbon. Results from isothermal combustion, isothermal gasification, and drop tube furnace experiments show that both types of chars exhibit a better reactivity than PCI coal. The excellent reactivity of chars is closely related to its high Brunauer–Emmett–Teller surface area and relatively poor chemical ordering during conversion. Based on these characteristics, both fluidized bed char (FBC) and moving bed char (MBC) have a great potential to be used as PCI fuels. The application method of chars for PCI in a blast furnace is proposed finally.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    M. Otero, X. Gomez, A.I. Garcia, A. Moran: Chemosphere, 2007, vol.69, pp. 1740-1750.

    CAS  Article  Google Scholar 

  2. 2.

    T.A.M. Asanuma, M. Sato, R. Murai, T. Nonaka, I. Okochi, H. Tsukiji, K. Nemoto: ISIJ Int, 2000, vol.40, pp. 244-251.

    CAS  Article  Google Scholar 

  3. 3.

    S. Melendi, M.A. Diez, R. Alvarez, C. Barriocanal: Fuel Processing Technology, 2011, vol.92, pp. 471-478.

    CAS  Article  Google Scholar 

  4. 4.

    W.S. A. Ziebik: Energy, 2001, vol.26, pp. 1159-1173.

    CAS  Article  Google Scholar 

  5. 5.

    C. Wang, P. Mellin, J. Lövgren, L. Nilsson, W. Yang, H. Salman, A. Hultgren, M. Larsson: Energy Convers. Manag., 2015, vol.102, pp. 217-226.

    CAS  Article  Google Scholar 

  6. 6.

    F. Nie, T. Meng, Q. Zhang: in Pyrolysis, M. Samer, ed., IntechOpen, Rijeka, 2017.

  7. 7.

    D. Pan, X. Qu, J. Bi: Journal of Analytical and Applied Pyrolysis, 2017, vol.127, pp. 461-467.

    CAS  Article  Google Scholar 

  8. 8.

    W. Duan, Q. Yu, H. Xie, Q. Qin: Energy, 2017, vol.135, pp. 317-326.

    CAS  Article  Google Scholar 

  9. 9.

    A. De Girolamo, N.K. Lameu, L. Zhang, Y. Ninomiya: Fuel Processing Technology, 2017, vol.156, pp. 113-123.

    Article  Google Scholar 

  10. 10.

    A. De Girolamo, A. Grufas, I. Lyamin, I. Nishio, Y. Ninomiya, L. Zhang: Energy & Fuels, 2016, vol.30, pp. 1858-1868.

    Article  Google Scholar 

  11. 11.

    C. Zou, J. Zhao, X. Li, R. Shi: Journal of Thermal Analysis and Calorimetry, 2016, vol.126, pp. 1469-1480.

    CAS  Article  Google Scholar 

  12. 12.

    J. Liao, A.B. Yu, Y. Shen: Powder Technology, 2017, vol.314, pp. 550-56.

    CAS  Article  Google Scholar 

  13. 13.

    J. Hu, Y. Chen, K. Qian, Z. Yang, H. Yang, Y. Li, H. Chen: Fuel Processing Technology, 2017, vol.159, pp. 178-186.

    CAS  Article  Google Scholar 

  14. 14.

    N. Howaniec: Fuel, 2016, vol.172, pp. 118-123.

    CAS  Article  Google Scholar 

  15. 15.

    W. Zhu, W. Song, W. Lin: Energy Fuels, 2008, vol.22, pp. 2482-2487.

    CAS  Article  Google Scholar 

  16. 16.

    B. Tian, Y.Y. Qiao, Y.Y. Tian, Q. Liu: J. Anal. Appl. Pyrolysis, 2016, vol.121, pp. 376-386.

    CAS  Article  Google Scholar 

  17. 17.

    P.B. Weisz, R.D. Goodwin: J. Catal., 1963, vol.2, pp. 397-404.

    CAS  Article  Google Scholar 

  18. 18.

    L. Lu, V. Sahajwalla, C. Kong, A. Mclean: ISIJ Int., 2002, vol.42, pp. 816-825.

    CAS  Article  Google Scholar 

  19. 19.

    H. Lorenz, E. Carrea, M. Tamura, J. Haas: Fuel 2000, vol.79, pp. 1161-1172.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Chen, S. Mori, W.P. Pan: J.Thermochimica Acta, 1996, vol.275, pp. 149-158.

    CAS  Article  Google Scholar 

  21. 21.

    Y. Wang, Y. Song, H. Zhou, K. Zhi, Y. Teng, R. He, R. Tian, Q. Liu: Environmental Progress & Sustainable Energy, 2017, vol.36, pp. 766-774.

    CAS  Article  Google Scholar 

  22. 22.

    L Lu, C. Kong, V Sahajwallab and D Harrisc: Fuel, 2002, vol.81, pp. 1215-1225.

    CAS  Article  Google Scholar 

  23. 23.

    B. Wang, L. Sun, S. Su, J. Xiang, S. Hu, H. Fei: Energy & Fuels, 2012, vol.26, pp. 1565-1574.

    CAS  Article  Google Scholar 

  24. 24.

    C. Sheng: Fuel, 2007, vol.86, pp. 2316-2324.

    CAS  Article  Google Scholar 

  25. 25.

    H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato: Fuel, 2004, vol.83, pp. 2427-2433.

    CAS  Article  Google Scholar 

  26. 26.

    L. Lu, V. Sahajwalla, D. Harris: Energy Fuels, 2000, vol.14, pp. 869-876.

    CAS  Article  Google Scholar 

  27. 27.

    R.-G. Kim, C.-H. Jeon: Applied Thermal Engineering, 2014, vol.63, pp. 565-576.

    CAS  Article  Google Scholar 

  28. 28.

    J. Deng, K. Wang, Y. Zhang, H. Yang: Journal of Thermal Analysis and Calorimetry, 2014, vol.118, pp. 417-423.

    CAS  Article  Google Scholar 

  29. 29.

    Q. Wang, J. Zhang, G. Wang, H. Wang, M. Sun: Energy Fuels, 2018, vol. 32, pp. 2145–2155.

    CAS  Article  Google Scholar 

  30. 30.

    MB Folgueras, RM Díaz, J Xiberta, I Prieto (2003) Fuel 82: 2051-2055.

    CAS  Article  Google Scholar 

  31. 31.

    D. Fan, Z. Zhu, Y. Na, Q. Lu: Journal of Thermal Analysis and Calorimetry, 2012, vol.113, pp. 599-607.

    Article  Google Scholar 

  32. 32.

    H. Li, L. Elliott, H. Rogers, P. Austin, Y. Jin, T. Wall: Energy & Fuels, 2012, vol.26, pp. 4690-4695.

    CAS  Article  Google Scholar 

  33. 33.

    C. Zou, L. Wen, S. Zhang, C. Bai, G. Yin: Fuel Processing Technology, 2014, vol.119, pp. 136-145.

    CAS  Article  Google Scholar 

  34. 34.

    X. Cui, X. Li, Y. Li, S. Li: Journal of Thermal Analysis and Calorimetry, 2017, vol.129, pp. 1169-1180.

    CAS  Article  Google Scholar 

  35. 35.

    GR Gavalas, P.H.K. Cheong, R. Jain: Ind. Eng. Chem. Fundam, 1981, vol.20, pp. 113-122.

    CAS  Article  Google Scholar 

  36. 36.

    H. Fei, P. Li, Y. Liu, Y. Li: Asia-Pacific Journal of Chemical Engineering, 2017, vol.12, pp. 25-32.

    CAS  Article  Google Scholar 

  37. 37.

    E.E. Petersen: AIChE, 1957, vol.3, pp. 443-448.

    CAS  Article  Google Scholar 

  38. 38.

    Zhang J-G, Sui Z.-G., Guo Q, Wang X-J, Yu G-S, Liu H-F, Wang F-C: J. Fuel Chem. Technol., 2017, vol. 45, pp. 129-137.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science Foundation Project of China (Nos. 51704224 and 51574189), and the Natural Science Foundation Research Project, Shaanxi, China (No. 2017TSCXL-GY-04-01 and 2015Ktzdsf01-04) for funding this research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Junxue Zhao or Xiaoming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 6, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, C., He, J., Zhao, J. et al. Structure and Reactivity of Low-Rank Coal Chars Prepared from Fluidized Bed and Moving Bed Pyrolyzers and the Potential for Using Them in Pulverized Coal Injection (PCI). Metall Mater Trans B 50, 2304–2318 (2019). https://doi.org/10.1007/s11663-019-01647-4

Download citation