Tuning Weld Metal Mechanical Responses via Welding Flux Optimization of TiO2 Content: Application into EH36 Shipbuilding Steel


A series of TiO2-containing basic-fluoride-type agglomerated fluxes was applied to join EH36 shipbuilding steel under high heat input SAW. The effects of TiO2 content on composition, microstructure features, inclusions characteristics, and mechanical properties of ensuing weld metals (WMs) were systematically investigated. 6 wt pct TiO2 leads to the most optimal mechanical properties. Such behaviors were elucidated via transfer of alloying elements, which enables a good combination of acicular ferrites (AFs) and accompanying microstructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    C. Dallam, S. Liu, and D. Olson: Weld. J., 1985, vol. 64, pp. 140–51.

    Google Scholar 

  2. 2.

    K. Easterling: Adv. Weld. Sci. Technol., 1986, pp. 177–85.

  3. 3.

    D.L. Olson, S. Liu, R.H. Frost, G.R. Edwards, and D.A. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

    Google Scholar 

  4. 4.

    C.A. Natalie, D.L. Olson, and M. Blander: Annu. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    CAS  Article  Google Scholar 

  5. 5.

    R. Kohno, T. Takami, N. Mori, and K. Nagano: Weld. J., 1982, vol. 61, p. 373.

    Google Scholar 

  6. 6.

    J. Roy, R.N. Rai, and S.C. Saha: Int. J. Mater. Prod. Technol., 2018, vol. 56, pp. 313–25.

    Article  Google Scholar 

  7. 7.

    S. Kumar and A. Shahi: Mater. Des., 2011, vol. 32, pp. 3617–23.

    CAS  Article  Google Scholar 

  8. 8.

    B. Kim, S. Uhm, C. Lee, J. Lee, and Y. An: J. Eng. Mater. Technol., 2005, vol. 127, pp. 204–13.

    CAS  Article  Google Scholar 

  9. 9.

    A.M. Paniagua-Mercado, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, P.E. Diaz, and E.D. Valdez: Mater. Charact., 2009, vol. 60, pp. 36–39.

    CAS  Article  Google Scholar 

  10. 10.

    K.-S. Bang, C. Park, H.-C. Jung, and J.-B. Lee: Met. Mater. Int., 2009, vol. 15, pp. 471–77.

    CAS  Article  Google Scholar 

  11. 11.

    M. Zhang, C.-W. Yao, B. Liu, and J.-H. Li: Trans. China Weld. Inst., 2006, vol. 27, p. 29.

    Google Scholar 

  12. 12.

    X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481–89.

    Article  Google Scholar 

  13. 13.

    American Society for Testing and Materials: ASTM E 8 Standard Test Methods of Tension Testing of Metallic Materials, 2nd ed., ASTM, West Conshohocken, PA, 2009, p. 7.

    Google Scholar 

  14. 14.

    R. Ricks, P. Howell, and G. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732–40.

    CAS  Article  Google Scholar 

  15. 15.

    B. Beidokhti, A. Koukabi, and A. Dolati: J. Mater. Process. Technol., 2009, vol. 209, pp. 4027–35.

    CAS  Article  Google Scholar 

  16. 16.

    A. Kojima, K. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, and K. Azuma: Nippon Steel Techn. Rep., 2004, vol. 380, pp. 33–37.

    Google Scholar 

  17. 17.

    J. Dowling, J. Corbett, and H. Kerr: Metall. Trans. A, 1986, vol. 17A, pp. 1611–23.

    CAS  Article  Google Scholar 

  18. 18.

    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi: Micron, 2013, vol. 45, pp. 107–14.

    CAS  Article  Google Scholar 

  19. 19.

    A. Fox, M. Eakes, and G. Franke: Weld. J., 1996, vol. 75, p. 330.

    Google Scholar 

  20. 20.

    F.C. Liao and S. Liu: Weld. J., 1992, vol. 71, pp. 94s–103s.

    Google Scholar 

  21. 21.

    T.-K. Lee and H.J. Kim: ISIJ Int., 2000, vol. 40, pp. 1260–68.

    CAS  Article  Google Scholar 

  22. 22.

    U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22B, pp. 65–71.

    CAS  Article  Google Scholar 

  23. 23.

    U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22B, pp. 73–81.

    CAS  Article  Google Scholar 

  24. 24.

    A. Mills, G. Thewlis, and J. Whiteman: Mater. Sci. Technol., 1987, vol. 3, pp. 1051–61.

    CAS  Article  Google Scholar 

  25. 25.

    C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–32.

    Google Scholar 

Download references

We thank the National Natural Science Foundation of China (Grant Nos. 51622401, 51628402, 51861130361, 51861145312, and 51850410522), the Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), the Research Fund for Central Universities (Grant No. N172502004), the National Key Research and Development Program of China (Grant No. 2016YFB0300602), and the Global Talents Recruitment Program endowed by the Chinese government for their financial support. We also thank the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (Grant No. SKLSP201805), Shagang Steel, and Lincoln Electric China.

Author information



Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 7, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Leng, J. & Wang, C. Tuning Weld Metal Mechanical Responses via Welding Flux Optimization of TiO2 Content: Application into EH36 Shipbuilding Steel. Metall Mater Trans B 50, 2083–2087 (2019). https://doi.org/10.1007/s11663-019-01645-6

Download citation