Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel


The source, characteristics, and mechanism of Al2O3-containing inclusions in Al-deoxidized spring steel were investigated using electron-probe X-ray microanalysis (EPMA). Spring samples were collected during vacuum degassing (VD) refining, in a tundish ladle, and after hot rolling, respectively. Based on primary inclusion components, seven types of inclusions were observed through the manufacturing process: Al2O3, Al2O3-SiO2, Al2O3-CaO, Al2O3-MgO, Al2O3-MgO-CaO, Al2O3-SiO2-MnO, and Al2O3-SiO2-CaO. The Al2O3 and Al2O3-SiO2 inclusions were mainly attributed to deoxidization products, less than 15 μm in diameter and with liquidus temperatures exceeding 1600 °C. For Al2O3-CaO inclusions, which were considered to be formed by the reduction of entrapped slag by Al dissolved in the steel, the Al2O3/CaO ratio obviously decreased with the increase of inclusion sizes. Most Al2O3-SiO2-CaO inclusions were less than 15 μm in diameter, with their composition close to that of the refining slag and a liquidus temperature near 1500 °C. The Al2O3-MgO and Al2O3-SiO2-MnO inclusions originated from inherent reactions between dissolved [Al], [Si], [Mn], [Mg], and [O] in the steel. Al2O3-MgO-CaO inclusions resulted from coalescence between Al2O3-MgO and Al2O3-CaO inclusions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    LECO is a trademark of LECO Corporation, St. Joseph, MI.


  1. 1.

    R. Sharp and D. Crolla: Vehicle Syst. Dyn., 1987, vol. 16, pp. 167–92.

    Article  Google Scholar 

  2. 2.

    D. Prasad and H. Kytömaa: Int. J. Multiph. Flow, 1995, vol. 21, pp. 775–85.

    CAS  Article  Google Scholar 

  3. 3.

    T. Yamamoto, R. Kobayashi, T. Ozone, and M. Kurimoto: J. Heat Treat., 1984, vol. 3, pp. 220–27.

    CAS  Article  Google Scholar 

  4. 4.

    R. Batson and J. Bradley: Proc. Inst. Mech. Eng., 1931, vol. 120, pp. 301–32.

    Article  Google Scholar 

  5. 5.

    S.K. Das, N. Mukhopadhyay, B.R. Kumar, and D. Bhattacharya: Eng. Fail. Anal., 2007, vol. 14, pp. 158–63.

    Article  Google Scholar 

  6. 6.

    J. Lankford: Int. Met. Rev., 1977, vol. 22, pp. 221–28.

    CAS  Article  Google Scholar 

  7. 7.

    Z. Szklarska-Smialowska: Corrosion, 1972, vol. 28, pp. 388–96.

    CAS  Article  Google Scholar 

  8. 8.

    J.S. Byun, J.H. Shim, Y. Cho, and D. Lee: Acta Mater., 2003, vol. 51, pp. 1593–1606.

    CAS  Article  Google Scholar 

  9. 9.

    Q.Y. Wang, J.Y. Berard, A. Dubarre, G. Baudry, S. Rathery, and C. Bathias: Fatig. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 667–72.

    CAS  Article  Google Scholar 

  10. 10.

    K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.

    CAS  Article  Google Scholar 

  11. 11.

    J. Zhang, S. Li, Z. Yang, G. Li, W. Hui, and Y. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765–71.

    CAS  Article  Google Scholar 

  12. 12.

    Z. Lei, Y. Hong, J. Xie, C. Sun, and A. Zhao: Mater. Sci. Eng. A, 2012, vol. 558, pp. 234–41.

    CAS  Article  Google Scholar 

  13. 13.

    P.J. Laz and B.M. Hillberry: Int. J. Fatigue, 1998, vol. 20, pp. 263–70.

    CAS  Article  Google Scholar 

  14. 14.

    T. Kunio, M. Shimizu, K. Yamada, K. Sakura, and T. Yamamoto: Int. J. Fatigue, 1981, vol. 17, pp. 111–19.

    CAS  Google Scholar 

  15. 15.

    J. Laizhu, C. Kun, and H. Hänninen: J. Mater. Process. Technol., 1996, vol. 58, pp. 160–65.

    Article  Google Scholar 

  16. 16.

    G. Ye, P. Jönsson, and T. Lund: ISIJ Int., 1996, vol. 36, pp. S105–S108.

    Article  Google Scholar 

  17. 17.

    H. Itoh, M. Hino, S. Ban.: Hagané, 1998, 84, 85–90.

    CAS  Article  Google Scholar 

  18. 18.

    H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381–88.

    CAS  Article  Google Scholar 

  19. 19.

    Y. Chen, T.M. Chen, X.H. Wang, and J. Chen: Adv. Mater. Res., 2011, vol. 284, pp. 1060–66.

    Article  Google Scholar 

  20. 20.

    X. Su, S.Q. Guo, M.R. Qiao, H.Y. Zheng, and L.B. Qin: Def. Diffus. Forum, 2018, vol. 382, pp. 80–85.

    Article  Google Scholar 

  21. 21.

    C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin, and H. Schifferl: Ironmak. Steelmak., 2003, vol. 30, pp. 165–69.

    CAS  Article  Google Scholar 

  22. 22.

    T. Abe, Y. Furuya, and S. Matsuoka: Fatig. Fract. Eng. Mater. Struct., 2004, vol. 27, pp. 159–67.

    CAS  Article  Google Scholar 

  23. 23.

    Q. Wang, C. Bathias, N. Kawagoishi, and Q. Chen: Int. J. Fatig., 2002, vol. 24, pp. 1269–74.

    CAS  Article  Google Scholar 

  24. 24.

    H. Itoga, K. Tokaji, M. Nakajima, and H.N. Ko: Int. J. Fatig., 2003, vol. 25, pp. 379–85.

    CAS  Article  Google Scholar 

  25. 25.

    S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Wang, Y.P. Huo, and S.M. Wang. Adv. Mater. Res., 2012, vol. 535, pp. 706–10.

    Google Scholar 

  27. 27.

    J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei: Int. J. Min. Met. Mater., 2018, vol. 25, pp. 280–87.

    CAS  Article  Google Scholar 

  28. 28.

    N. Eid and P. Thomason: Acta Mater., 1979, vol. 27, pp. 1239–49.

    CAS  Article  Google Scholar 

  29. 29.

    B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 533–38.

    CAS  Article  Google Scholar 

  30. 30.

    J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Ironmak. Steelmak., 2008, vol. 35, pp. 589–99.

    Article  Google Scholar 

  31. 31.

    Y. Kang, F. Li, K. Morita, and D. Sichen: Steel. Res. Int., 2006, vol. 77, pp. 785–92.

    CAS  Article  Google Scholar 

  32. 32.

    S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  33. 33.

    L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    CAS  Article  Google Scholar 

  34. 34.

    M. Jiang, X. Wang, and W. Wang: Steel. Res. Int., 2010, vol. 81, pp. 759–65.

    CAS  Article  Google Scholar 

  35. 35.

    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48, pp. 885–90.

    CAS  Article  Google Scholar 

  36. 36.

    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, pp. 95–104.

    CAS  Article  Google Scholar 

  37. 37.

    M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills, and D. Neuschütz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 104, 116, 160.

  38. 38.

    S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79–85.

    CAS  Article  Google Scholar 

  39. 39.

    L. Zhang and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 733–61.

    CAS  Article  Google Scholar 

  40. 40.

    M. Faraji, D.P. Wilcox, R. Thackray, A.A. Howe, I. Todd, and P. Tsakiropoulos: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2490–2502.

    Article  Google Scholar 

  41. 41.

    M.A.V. Ende, M. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2009, vol. 36, pp. 201–08.

    Article  Google Scholar 

  42. 42.

    E. Steinmetz, H.U. Linderberg, W. Morsdorf, and P. Hammerschmid: Arch. Eisenhuttenwes., 1977, vol. 48, pp. 569–74.

    CAS  Google Scholar 

  43. 43.

    K. Mills, A. Fox, Z. Li, and R. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    CAS  Article  Google Scholar 

  44. 44.

    K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2198–2207.

    Article  Google Scholar 

  45. 45.

    C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, and J. Melançon: Calphad, 2016, vol. 54, pp. 35–53.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Australian Research Council and Baosteel Australia Research and Development Centre. The University of Queensland International Research Tuition Award and China Scholarship Council provided scholarships for Mr. Sha Lyu. The Australian Microscopy & Microanalysis Research Facility is acknowledged for providing characterization facilities. Technical support for the EPMA facility from Mr. Ron Rasch and Ms. Ying Yu, Centre for Microscopy and Microanalysis, University of Queensland, is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Xiaodong Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Ma, X., Huang, Z. et al. Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel. Metall Mater Trans B 50, 2205–2220 (2019).

Download citation