Dynamic Wetting of High-Al Steel by CaO-SiO2- and CaO-Al2O3-Based Mold Fluxes


Wetting of steel by mold fluxes affects the surface quality of steel products. Reaction between [Al] and mold fluxes in the continuous casting of high-Al steel leads to a dynamic interfacial phenomenon. This work investigated the wetting of the high-Al steel substrate by CaO-SiO2-based and CaO-Al2O3-based mold fluxes. The interfacial tensions were estimated and related to their high-temperature structures. The interface morphology revealed that CaO-SiO2-based mold flux and CaO-Al2O3-based mold flux with CaO/Al2O3 = 1 exhibited deep reaction zones in the steel substrates and irregular flux/steel interfaces, while CaO-Al2O3-based mold fluxes with CaO/Al2O3 = 2 and 3 showed smooth interfaces and superficial reaction zones. The sedation of dynamic wetting behavior in Samples 3 and 4 was related to the high viscosity in the flux droplet after the initial composition change, which led to the stabilization of the interface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee and S.-H. Kim: Metall. Mater. Trans. A, 2006, vol.37, pp. 1597-611.

    CAS  Article  Google Scholar 

  2. 2.

    L. Zhang and B. G. Thomas: ISIJ Int., 2003, vol.43, pp. 271-91.

    CAS  Article  Google Scholar 

  3. 3.

    G. Parry and O. Ostrovski: ISIJ Int., 2009, vol.49, pp. 788-95.

    CAS  Article  Google Scholar 

  4. 4.

    E.-J. Jung, W. Kim, I. Sohn and D.-J. Min: J. Mater. Sci., 2010, vol.45, pp. 2023-29.

    CAS  Article  Google Scholar 

  5. 5.

    E. J. Jung and D. J. Min: Steel Res. Int., 2012, vol.83, pp. 705-11.

    CAS  Article  Google Scholar 

  6. 6.

    W. Wang, J. Li, L. Zhou and J. Yang: Met. Mater. Int., 2016, vol.22, pp. 700-06.

    Article  Google Scholar 

  7. 7.

    W.-l. Wang, E.-z. Gao, L.-j. Zhou, L. Zhang and H. Li: J. Iron. Steel. Res. Int, 2019, vol.26, pp. 355-64.

    Article  Google Scholar 

  8. 8.

    J. B. Kim, J. K. Choi, I. W. Han and I. Sohn: J. Non-Cryst. Solids, 2016, vol.432, pp. 218-26.

    CAS  Article  Google Scholar 

  9. 9.

    P. V. Riboud and L. D. Lucas: Can. Metall. Quart., 1981, vol.20, pp. 199-208.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Chung and A. W. Cramb: Metall. Mater. Trans. B, 2000, vol.31, pp. 957-71.

    CAS  Article  Google Scholar 

  11. 11.

    L. Zhou, J. Li, W. Wang and I. Sohn: Metall. Mater. Trans. B, 2017, vol.48, pp. 1943-50.

    Article  Google Scholar 

  12. 12.

    P.-G. De Gennes, F. Brochard-Wyart and D. Quere: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, NY, 2004, 275-76.

    Google Scholar 

  13. 13.

    P. F. McMillan, B. T. Poe, P. H. Gillet and B. Reynard: Geochim. Cosmochim. Ac, 1994, vol.58, pp. 3653-64.

    CAS  Article  Google Scholar 

  14. 14.

    I. Sohn and D. J. Min: Steel Res. Int., 2012, vol.83, pp. 611-30.

    CAS  Article  Google Scholar 

  15. 15.

    Z. Wang and I. Sohn: J. Am. Ceram. Soc., 2018, vol.101, pp. 4285-96.

    CAS  Article  Google Scholar 

  16. 16.

    Y. Sun and Z. Zhang: Metall. Mater. Trans. B, 2015, vol.46, pp. 1549-54.

    Article  Google Scholar 

  17. 17.

    B. Mysen and D. Neuville: Geochim. Cosmochim. Ac, 1995, vol.59, pp. 325-42.

    CAS  Article  Google Scholar 

  18. 18.

    J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2017, vol.48, pp. 2077-91.

    Article  Google Scholar 

  19. 19.

    Y. Kim and K. Morita: ISIJ Int., 2014, vol.54, pp. 2077-83.

    CAS  Article  Google Scholar 

  20. 20.

    G.-H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol.358, pp. 1530-37.

    CAS  Article  Google Scholar 

  21. 21.

    T. S. Kim and J. H. Park: ISIJ Int., 2014, vol.54, pp. 2031-38.

    CAS  Article  Google Scholar 

  22. 22.

    E. Gao, W. Wang and L. Zhang: J. Non-Cryst. Solids, 2017, vol.473, pp. 79-86.

    CAS  Article  Google Scholar 

  23. 23.

    J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Non-Cryst. Solids, 2016, vol.452, pp. 119-24.

    CAS  Article  Google Scholar 

  24. 24.

    J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Am. Ceram. Soc., 2016, vol.99, pp. 3941-47.

    CAS  Article  Google Scholar 

  25. 25.

    P. McMillan and B. Piriou: J. Non-Cryst. Solids, 1983, vol.55, pp. 221-42.

    CAS  Article  Google Scholar 

  26. 26.

    P. Tarte: Spectrochimica Acta Part A: Molecular Spectroscopy, 1967, vol.23, pp. 2127-43.

    CAS  Article  Google Scholar 

  27. 27.

    J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 38-43.

    CAS  Article  Google Scholar 

  28. 28.

    J. Qi, C. Liu and M. Jiang: J. Non-Cryst. Solids, 2017, vol.475, pp. 101-07.

    CAS  Article  Google Scholar 

  29. 29.

    D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol.229, pp. 173-85.

    CAS  Article  Google Scholar 

  30. 30.

    L. Zhang, W. Wang, S. Xie, K. Zhang and I. Sohn: J. Non-Cryst. Solids, 2017, vol.460, pp. 113-18.

    CAS  Article  Google Scholar 

  31. 31.

    E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos: J Phys. Chem., 1987, vol.91, pp. 1073-79.

    CAS  Article  Google Scholar 

  32. 32.

    J.-Y. Park, G. H. Kim, J. B. Kim, S. Park and I. Sohn: Metall. Mater. Trans. B, 2016, vol.47, pp. 2582-94.

    Article  Google Scholar 

  33. 33.

    G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol.45, pp. 86-95.

    Article  Google Scholar 

  34. 34.

    G. Padmaja and P. Kistaiah: J. Phys. Chem. A, 2009, vol.113, pp. 2397-404.

    CAS  Article  Google Scholar 

  35. 35.

    Y. Kim, Y. Yanaba and K. Morita: J. Am. Ceram. Soc., 2017, vol.100, pp. 5746-54.

    CAS  Article  Google Scholar 

  36. 36.

    Z. Wang, Q. Shu and K. Chou: ISIJ Int., 2011, vol.51, pp. 1021-27.

    CAS  Article  Google Scholar 

  37. 37.

    T. Young: Miscellaneous works of the late Thomas Young, J. Murray, London, 1855.

    Google Scholar 

  38. 38.

    K. Nakashima and K. Mori: ISIJ Int., 1992, vol.32, pp. 11-18.

    CAS  Article  Google Scholar 

  39. 39.

    B. J. Keene: Int. Mater. Rev., 1988, vol.33, pp. 1-37.

    CAS  Article  Google Scholar 

  40. 40.

    S. I. Popel, B. V. Tsarevskiy and N. K. Dzhemilev: Fiz. Metal. Metalloved., 1964, vol.18, pp. 468-70.

    CAS  Google Scholar 

  41. 41.

    W. R. Tyson and W. A. Miller: Surf. Sci., 1977, vol.62, pp. 267-76.

    CAS  Article  Google Scholar 

  42. 42.

    B. J. Keene, K. C. Mills, J. W. Bryant and E. D. Hondros: Can. Metall. Quart., 1982, vol.21, pp. 393-403.

    CAS  Article  Google Scholar 

  43. 43.

    M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.

    Article  Google Scholar 

  44. 44.

    H. Zhu, K. Dong, J. Huang, J. Li, G. Wang and Z. Xie: Mater. Chem. Phys., 2014, vol.145, pp. 334-41.

    CAS  Article  Google Scholar 

  45. 45.

    G. Parry and O. Ostrovski: Metall. Mater. Trans. B, 2008, vol.39, pp. 669-80.

    CAS  Article  Google Scholar 

  46. 46.

    B. Hallstedl: J. Am. Ceram. Soc., 1990, vol.73, pp. 15-23.

    Article  Google Scholar 

Download references


Financial supports from Baosteel-Australia Joint Research and Development Centre (BAJC) (BA16006) and Australian Research Council (ARC) Industrial Transformation Hub (IH140100035) are greatly acknowledged. The support for the thermodynamic calculation using FactSage 7.0 from Prof Yaru Cui, Xi’an University of Architecture and Technology is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Jianqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, J., Ostrovski, O. et al. Dynamic Wetting of High-Al Steel by CaO-SiO2- and CaO-Al2O3-Based Mold Fluxes. Metall Mater Trans B 50, 2175–2185 (2019). https://doi.org/10.1007/s11663-019-01643-8

Download citation