Numerical Analysis of Molten Pool Behavior and Spatter Formation with Evaporation During Selective Laser Melting of 316L Stainless Steel

Abstract

During the selective laser-melting process, material evaporation and resultant spatter are common phenomena that bring about many defects. However, the underlying physical phenomena such as molten pool behavior and spatter formation, as evaporation occurred, are sparsely understood and difficult to observe during the process. Thus, a three–dimensional powder-scale model was established to investigate the thermal and flow behavior of the molten pool, the morphology evolution of the molten pool and keyhole, and the spatter formation with evaporation in the selective laser-melting processing of 316L stainless steel. Phase transitions and variations in interfacial force were taken into account in this model. The modified phase-field method was applied to trace the melt–gas interface. The results showed that keyhole formed in molten pool under recoil pressure, and that there were some differences in the temperature distribution and flow behavior inside and outside the keyhole. In addition, the dimension and surface morphology of the molten pool and keyhole depth altered and gradually stabilized during the process. Moreover, droplet spatter formation at rear of molten pool proceeded roughly as follows: the backward ejection of melt vapor would induce a depression in molten pool and a bump on the molten pool surface, the bump moved backward and subsequently a liquid column formed, then the liquid column formed a neck and gradually pinched off, resulting in the droplet spatter. Furthermore, the characteristic morphology of the scan track and dimension of the molten pool were obtained through experiments, which showed good agreement with the simulation results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, and Z. Chen: Metall. Mater. Trans. B, 2019, vol. 50, pp. 531–42.

    Article  Google Scholar 

  2. 2.

    K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai: Mater. Sci. Eng. A, 2018, vol. 735, pp. 182–90.

    CAS  Article  Google Scholar 

  3. 3.

    C.Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, p. 041101.

    Article  Google Scholar 

  4. 4.

    V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, I. Koutiri, and R. Fabbro: J. Mater. Process. Tech., 2018, vol. 251, pp. 376–86.

    CAS  Article  Google Scholar 

  5. 5.

    L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel: Int. J. Mach. Tools Manuf., 2017, vol. 121, pp. 22–36.

    Article  Google Scholar 

  6. 6.

    D. Dai and D. Gu: Appl. Surf. Sci., 2015, vol. 355, pp. 310–19.

    CAS  Article  Google Scholar 

  7. 7.

    Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song: Mater. Des., 2015, vol. 87, pp. 797–806.

    CAS  Article  Google Scholar 

  8. 8.

    A. Anwar and P. Quang-Cuong: in Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 2018, pp. 541–46.

  9. 9.

    V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, C. Frédéric, and F. Rémy: J. Laser Appl., 2017, vol. 29, p. 022303.

    Article  Google Scholar 

  10. 10.

    M. TaheriAndani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni: Addit. Manuf., 2018, vol. 20, pp. 33–43.

    Article  Google Scholar 

  11. 11.

    D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, and C. Song: Mater. Des., 2017, vol. 117, pp. 121–30.

    CAS  Article  Google Scholar 

  12. 12.

    F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers: Acta Mater., 2009, vol. 57, pp. 6006–12.

    CAS  Article  Google Scholar 

  13. 13.

    A. Masmoudi, R. Bolot, and C. Coddet: J. Mater. Process. Technol., 2015, vol. 225, pp. 122–32.

    Article  Google Scholar 

  14. 14.

    Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang: J. Mater. Process. Technol., 2018, vol. 254, pp. 72–78.

    Article  Google Scholar 

  15. 15.

    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.

    CAS  Article  Google Scholar 

  16. 16.

    C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah: Acta Mater., 2015, vol. 96, pp. 72–79.

    CAS  Article  Google Scholar 

  17. 17.

    P. Wei, Z. Wei, Z. Chen, Y. He, and J. Du: Appl. Phys. A, 2017, vol. 123, p. 604.

    Article  Google Scholar 

  18. 18.

    Z. Chen, Y. Xiang, Z. Wei, P. Wei, B. Lu, L. Zhang, and J. Du: Appl. Phys. A, 2018, vol. 124, p. 313.

    Article  Google Scholar 

  19. 19.

    V.R. Voller and C. Prakash: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 1709–19.

    CAS  Article  Google Scholar 

  20. 20.

    C. Mickael, M. Carin, P. Le Masson, S. Gaied, and B. Mikhaël: J. Phys. D. Appl. Phys., 2013, vol. 46, p. 505305.

    Article  Google Scholar 

  21. 21.

    V. Bruyere, C. Touvrey, P. Namy, and N. Authier: J. Laser Appl., 2017, vol. 29, p. 022403.

    Article  Google Scholar 

  22. 22.

    Y. Zhang, Z. Shen, and X. Ni: Int. J. Heat Mass Transf., 2014, vol. 73, pp. 429–37.

    CAS  Article  Google Scholar 

  23. 23.

    C. Touvrey, V. Bruyere, and P. Namy: A Phase Field Approach to Model Laser Power Control in Spot Laser Welding, https://cn.comsol.com/paper/download/199279/touvrey_paper.pdf. Accessed 25 March 2016

  24. 24.

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    CAS  Article  Google Scholar 

  25. 25.

    D. Dai and D. Gu: Int. J. Mach. Tools Manuf., 2016, vol. 100, pp. 14–24.

    Article  Google Scholar 

  26. 26.

    F. Hardesty: Metals Handbook, Ninth Edition. Volume 3, Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals, vol. 6, 1982.

  27. 27.

    A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi: Mater. Des., 2016, vol. 89, pp. 255–63.

    CAS  Article  Google Scholar 

  28. 28.

    K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl: Met. Powder Rep., 2017, vol. 72, pp. 331–38.

    Article  Google Scholar 

  29. 29.

    K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead, Wiltshire, England, 2002.

    Google Scholar 

  30. 30.

    M. Markl and C. Körner: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 93–123.

    CAS  Article  Google Scholar 

  31. 31.

    J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng: Mater. Des., 2016, vol. 110, pp. 558–70.

    CAS  Article  Google Scholar 

  32. 32.

    R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.

    CAS  Article  Google Scholar 

  33. 33.

    A. V Gusarov and I. Smurov: Phys. Procedia, 2010, vol. 5, pp. 381–94.

    CAS  Article  Google Scholar 

  34. 34.

    W. Tan, N. S Bailey, and Y. Shin: J. Phys. D. Appl. Phys., 2013, vol. 46, p. 055501.

    Article  Google Scholar 

  35. 35.

    J. Deng: Hunan University, 2016.

  36. 36.

    R. Fabbro, S. Slimani, I. Doudet, C. Frederic, and F. Briand: J. Phys. D. Appl. Phys., 2006, vol. 39, p. 394.

    CAS  Article  Google Scholar 

  37. 37.

    S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews: Sci. Rep., 2017, vol. 7, p. 4085.

    Article  Google Scholar 

  38. 38.

    C.D. Boley, S.C. Mitchell, A.M. Rubenchik, and S.S.Q. Wu: Appl. Opt., 2016, vol. 55, pp. 6496–500.

    CAS  Article  Google Scholar 

  39. 39.

    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto: Comput. Mater. Sci., 2017, vol. 126, pp. 479–90.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Programs of the Chinese Academy of Sciences [Grant Number KGZD-EW-T0], the National Natural Science Foundation of China [Grant Number 11702290], the CAS “Light of West China” Program, and the Chongqing Research of Application Foundation and Advanced Technology [Grant Number cstc2016jcyjA0321].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dengfu Chen or Xuanming Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 5, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Xie, H., Wang, S. et al. Numerical Analysis of Molten Pool Behavior and Spatter Formation with Evaporation During Selective Laser Melting of 316L Stainless Steel. Metall Mater Trans B 50, 2273–2283 (2019). https://doi.org/10.1007/s11663-019-01641-w

Download citation