Thermal Properties of Carbon-Containing Iron Ore Composite Prepared by Vapor Deposition of Tar for Limonite

Abstract

The optimal conditions for preparing composites, in which tar-derived carbonaceous materials completely fill the pores in Indonesian limonite(IL), were investigated using the vapor deposition (VD) method of tar. Characterization of the composites and their reactivity (reduction/combustion/gasification) during heat treatment was examined. The specific surface area and pore volume of the as-received-IL and dehydrated-IL decreased after the VD treatment for different combinations of tar pyrolysis temperature (TPT) and VD temperature (VDT). It was also noted that the carbon content and crushing strength of the samples increased after the VD treatment, and the optimal values for the TPT-VDT are 700 °C and 350 °C. The C content and the crushing strengths of the composites prepared at TPT-VDT = 700 °C to 350 °C increased with an increase of the VD time to 50 pct carbon content and 10 daN at 240 minutes, respectively. The strength was similar to that of commercial metallurgical coke used in blast furnaces. The reduction of the composite prepared at TPT-VDT = 700 °C to 350 °C for 240 minutes started above 400 °C and was almost completed at 1000 °C. This reduction rate was higher than that of commercial cold-bonded pellets or a coke/IL mixture. The combustion and gasification rates of the composites prepared under different conditions depended on the preparation condition of composites, and the rates were higher than those of commercial metallurgical coke used in blast furnaces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    T. Sato, M. Sato, K. Takeda and T. Arima: Testu-to-hagane, 2006, vol. 92, pp. 1006-1014.

    CAS  Article  Google Scholar 

  2. 2.

    T. Murakami, T. Kodaira, and E. Kasai: ISIJ Int., 2015, vol. 55, pp. 1181-1187.

    CAS  Article  Google Scholar 

  3. 3.

    C. Fukumoto, K. Sato, N. Ohyama and M. Sato: CAMP-ISIJ, 2009, vol. 22, pp. 828.

    Google Scholar 

  4. 4.

    M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi and Y. Inoue: Shinnittetsu Giho, 2006, vol. 384, pp. 95-99

    Google Scholar 

  5. 5.

    Y. Matsui, M. Sawayama, A. Kasai, Y. Yamaguchi and F. Noma: ISIJ Int., 2003, vol. 43, pp. 1904-1912.

    CAS  Article  Google Scholar 

  6. 6.

    A. Kasai, M. Naito, Y. Matsui and Y. Yamagata: Tetsu-to-hagane, 2003, vol. 89, pp. 1212-1219.

    CAS  Article  Google Scholar 

  7. 7.

    K. Miura, K. Miyabayashi, M. Kawanari and R. Ashida: ISIJ Int., 2011, vol. 51, pp. 1234-1239.

    CAS  Article  Google Scholar 

  8. 8.

    M. Kawanari, A. Matsumoto, R. Ashida and K. Miura: ISIJ Int., 2011, vol. 51, pp. 1227-1233.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Hata, S. Hosokai, J.-i. Hayashi and T. Akiyama: CAMP-ISIJ., 2007, vol. 20, pp. 923.

    Google Scholar 

  10. 10.

    Y. Hata, H. Purwanto, S. Hosokai, J.-i. Hayashi, Y. Kashiwaya and T. Akiyama: Energy Fuels., 2009, vol. 23, pp. 1128-1131.

    CAS  Article  Google Scholar 

  11. 11.

    S. Hosokai, K. Matsui, N. Okinaka, K.-i. Ohno, M. Shimizu and T. Akiyama: Energy Fuels., 2012, vol. 26, pp. 7274-7279.

    CAS  Article  Google Scholar 

  12. 12.

    R. B. Cahyono, G. Saito, N. Yasuda, T. Nomura, and T. Akiyama: Energy Fuels, 2014, vol. 28, pp. 2129-2134.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Mochizuki, Tsubouchi and T. Akiyama: Fuel Process. Technol., 2015, vol. 138, pp. 704–13.

  14. 14.

    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Fuel Process. Technol., 2016, vol. 142, pp. 287-295.

    CAS  Article  Google Scholar 

  15. 15.

    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Energy Fuels., 2016, vol. 30, pp. 2102-2110.

    CAS  Article  Google Scholar 

  16. 16.

    Y. Mochizuki, M. Nishio, J. Ma, N. Tsubouchi and T. Akiyama: Energy Fuels., 2016, vol. 30, pp. 6233-6239.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Energy Fuels., 2017, vol. 31, pp. 8877-8885.

    CAS  Article  Google Scholar 

  18. 18.

    Y. Mochizuki, N. Tsubouchi and T. Akiyama: ISIJ Int., 2018, vol. 58, pp. 460.

    CAS  Article  Google Scholar 

  19. 19.

    Y. Mochizuki, N. Tsubouchi and T. Akiyama: Fuel Process. Technol., 2018, vol. 176, pp. 21-32.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Mochizuki, M. Y. Kubota, K. Uebo, and N. Tsubouchi: Fuel, 2018, vol. 232, pp. 780-790.

    CAS  Article  Google Scholar 

  21. 21.

    H. Naono and R. Fujiwara: J. Colloid Interface Sci., 1980, vol. 73, pp. 406-468.

    CAS  Article  Google Scholar 

  22. 22.

    M. Egashira, H. Katsuki, Y. Ezaki, K. Ichiyama, T. Kamitani and S. Kawasumi S: Sekiyu Gakkaishi, 1985, vol. 28, pp. 246-251.

    CAS  Article  Google Scholar 

  23. 23.

    N. Tsubouchi, A. Ogawa, and Y. Mochizuki: Appl. Catal. A-General 2015, vol. 499, pp. 133-138.

    CAS  Article  Google Scholar 

  24. 24.

    N. Tsubouchi, Y.Mikawa, Y.Mochizuki, K.Takemitsu, and Y. Ohtsuka, Energy Fuels 2017, vol. 31, pp. 3885-3891.

    Article  Google Scholar 

  25. 25.

    Y. Ohtsuka, Y. Kuroda, Y. Tamai and A. Tomita: Fuel, 1986, vol. 65, pp. 1476-1478.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by the JFE 21st Century Foundation. The authors acknowledge the supply of limonite from Kobe Steel Ltd. and Mitsubishi Chemical Corp. in Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoto Tsubouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 2, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, Y., Tsubouchi, N. Thermal Properties of Carbon-Containing Iron Ore Composite Prepared by Vapor Deposition of Tar for Limonite. Metall Mater Trans B 50, 2259–2272 (2019). https://doi.org/10.1007/s11663-019-01640-x

Download citation