Compositional Dependence of Normal Spectral Emissivity of Molten Cu-Fe Alloy

Abstract

Normal spectral emissivity of molten Cu-Fe alloy with different compositions was measured at the wavelength of 807 nm using an electromagnetic levitator superimposed with a static magnetic field, which is capable of producing accurate normal spectral emissivity data because the applied static magnetic field suppresses translational and surface oscillations of a levitated sample to consequently reduce measurement uncertainties. Cu-Fe alloy samples used in this study were Cu97Fe3, Cu93Fe7, Cu92Fe8, Cu90Fe10, Cu80Fe20, and Cu70Fe30. The strength of the static magnetic field and temperature ranged from 3.0 to 3.5 T and 1350 to 1750 K, respectively. The measured normal spectral emissivity indicated negligible temperature dependence in a wide temperature range. In contrast, the compositional dependence indicated a distinct tendency in which the emissivity increased markedly with the composition of Fe up to 10 at pct.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    1. X.Y. Lu, C.D. Cao and B. Wei, Mater. Sci. Eng. A, 2001, vol. 313, pp. 198-206.

    Article  Google Scholar 

  2. 2.

    2. S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia and B. Wei, Acta Mater., 2014, vol. 69, pp. 355-364.

    CAS  Article  Google Scholar 

  3. 3.

    3. Y. Qi, L. Wang, S. Wang, X. Li and W. Cui, J. Alloys Compd., 2014, vol. 615, pp. 962-968.

    CAS  Article  Google Scholar 

  4. 4.

    4. S. Liu, J. Jie, B. Dong, Z. Guo, T. Wang and T. Li, Mater. Des., 2018, vol. 156, pp. 71-81.

    CAS  Article  Google Scholar 

  5. 5.

    5. S. Liu, J. Jie, Z. Guo, G. Yin, T. Wang and T. Li, J. Alloys Compd., 2018, vol. 742, pp. 99-106.

    CAS  Article  Google Scholar 

  6. 6.

    6. X. Sun, W. Hao, G. Geng, T. Ma and Y. Li, Adv. Mater. Sci. Eng., 2018, vol. 2018, 6304518.

    Google Scholar 

  7. 7.

    7. J. Zhang, X. Cui and Y. Wang, Int. J. Cast Met. Res., 2018, vol. 31, pp. 87-92.

    CAS  Article  Google Scholar 

  8. 8.

    8. W. Dokko and R.G. Bautista, Metall. Trans. B, 1979, vol. 10, pp. 450-453.

    Article  Google Scholar 

  9. 9.

    9. K. Nagata, T. Nagane and M. Susa, ISIJ Int., 1997, vol. 37, pp. 399-403.

    CAS  Article  Google Scholar 

  10. 10.

    10. H. Watanabe, M. Susa, H. Fukuyama and K. Nagata, Int. J. Thermophys., 2003, vol. 24, pp. 1105-1120.

    CAS  Article  Google Scholar 

  11. 11.

    11. R. Kurosawa, T. Inoue, Y. Baba, K. Sugioka, M. Kubo, T. Tsukada and H. Fukuyama, Meas. Sci. Technol., 2012, vol. 24, 015603.

    Article  Google Scholar 

  12. 12.

    12. C. Cagran and G. Pottlacher, J. Non-Cryst. Solids, 2007, vol. 353, pp. 3582-3586.

    CAS  Article  Google Scholar 

  13. 13.

    C. Cagran, C. Brunner, A. Seifter and G. Pottlacher, High Temp. High Press., 2002, vol. 34, pp. 669-680.

    CAS  Article  Google Scholar 

  14. 14.

    14. H. Watanabe, M. Susa and K. Nagata, Metall. Mater. Trans. A, 1997, vol. 28, pp. 2507-2513.

    Article  Google Scholar 

  15. 15.

    15. H. Kobatake, H. Khosroabadi and H. Fukuyama, Metall. Mater. Trans. A, 2012, vol. 43, pp. 2466-2472.

    Article  Google Scholar 

  16. 16.

    16. P. Ratanapupech and R. Bautista, High Temp. Sci., 1981, vol. 14, pp. 269-283.

    CAS  Google Scholar 

  17. 17.

    17. B. Wilthan, C. Cagran, G. Pottlacher and E. Kaschnitz, Monatshefte für Chemie / Chemical Monthly, 2005, vol. 136, pp. 1971-1976.

    CAS  Article  Google Scholar 

  18. 18.

    18. M. Watanabe, M. Adachi and H. Fukuyama, J. Mater. Sci., 2017, vol. 52, pp. 9850-9858.

    CAS  Article  Google Scholar 

  19. 19.

    19. D.B. Smith and J. Chipman, JOM, 1952, vol. 4, pp. 643-644.

    CAS  Article  Google Scholar 

  20. 20.

    20. T. Mori, K. Fujimura, T. Higashi and H. Yoshimoto, Tetsu-to-Hagane, 1971, vol. 57, pp. 1198-1212.

    CAS  Article  Google Scholar 

  21. 21.

    21. H. Kobatake, H. Khosroabadi and H. Fukuyama, Meas. Sci. Technol., 2010, vol. 22, 015102.

    Article  Google Scholar 

  22. 22.

    22. S. Ueno, Y. Nakamura, K.-I. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama, Int. J. Thermophys., 2017, vol. 38, p. 16.

    Article  Google Scholar 

  23. 23.

    23. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada and S. Awaji, Appl. Phys. Lett., 2007, vol. 90, 094102.

    Article  Google Scholar 

  24. 24.

    24. Y. Baba, T. Inoue, K.-i. Sugioka, H. Kobatake, H. Fukuyama, M. Kubo and T. Tsukada, Meas. Sci. Technol., 2012, vol. 23, 045103.

    Article  Google Scholar 

  25. 25.

    25. Y. Nakamura, R. Takahashi, E. Shoji, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama, Metall. Mater. Trans. B, 2017, vol. 48, pp. 3213-3218.

    Article  Google Scholar 

  26. 26.

    26. P. Terzieff and J.G. Gasser, J. Phys.: Condens. Matter, 1996, vol. 8, pp. 7041-7048.

    CAS  Google Scholar 

  27. 27.

    27. M.A. Turchanin, P.G. Agraval and I.V. Nikolaenko, J. Phase Equilib., 2003, vol. 24, pp. 307-319.

    CAS  Article  Google Scholar 

  28. 28.

    28. J.C. De Vos, Physica, 1954, vol. 20, pp. 669-689.

    Article  Google Scholar 

  29. 29.

    29. W. Dokko and R.G. Bautista, Metall. Trans. B, 1980, vol. 11, pp. 309-312.

    CAS  Article  Google Scholar 

  30. 30.

    30. R. Tanaka, T. Sato and M. Susa, Metall. Mater. Trans. A, 2005, vol. 36, pp. 1507-1514.

    Article  Google Scholar 

  31. 31.

    31. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz and W.A. Wakeham, J. Phys. Chem. Ref. Data, 2010, vol. 39, 033105.

    Article  Google Scholar 

  32. 32.

    32. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato and W.A. Wakeham, J. Phys. Chem. Ref. Data, 2006, vol. 35, pp. 285-300.

    CAS  Article  Google Scholar 

  33. 33.

    33. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book. Oxford, Butterworth-Heinemann; 2003

    Google Scholar 

  34. 34.

    34. E. Esposito, H. Ehrenreich and C.D. Gelatt, Physical Review B, 1978, vol. 18, pp. 3913-3920.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eita Shoji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoji, E., Takahashi, R., Isogai, S. et al. Compositional Dependence of Normal Spectral Emissivity of Molten Cu-Fe Alloy. Metall Mater Trans B 50, 2454–2458 (2019). https://doi.org/10.1007/s11663-019-01638-5

Download citation