Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning


In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    L. Zhang, and B. G. Thomas, ISIJ Int., 2003, vol. 43, pp. 271 – 291.

    CAS  Article  Google Scholar 

  2. 2.

    K.-I. Uemura, M. Takahashi, S. Koyama, and M. Nitta, ISIJ Int., 1992, vol. 32, pp. 150 – 156.

    CAS  Article  Google Scholar 

  3. 3.

    K. Janiszewski, Steel Res. Int., 2012, vol. 84, pp. 288 – 296.

    Article  Google Scholar 

  4. 4.

    K. Janiszewski, and B. Panic, Metalurgija, 2014, vol. 53, pp. 339 – 342.

    Google Scholar 

  5. 5.

    K. Janiszewski, B. Gajdzik, K. Gryc, L. Socha, and A. Bogdał, Solid State Phenom., 2015, vol. 226, pp. 189 – 192.

    Article  Google Scholar 

  6. 6.

    C. G. Aneziris, S. Dudczig, J. Hubálková, M. Emmel, and G. Schmidt, Ceram. Int., 2013, vol. 39, pp. 2835 – 2843.

    CAS  Article  Google Scholar 

  7. 7.

    A. Schmidt, A. Salomon, S. Dudczig, H. Berek, D. Rafaja, C. G. Aneziris: Adv. Eng. Mater. vol. 19, p. 1700170 (2017).

    Article  Google Scholar 

  8. 8.

    M. Schlautmann, B. Kleimt, A. Kubbe, Andreas, R. Teworte, D. Rzehak, D. Senk, A. Jaklic, and M. Klinar, Stahl. Eisen, 2011, vol. 131, pp. 57-65.

    CAS  Google Scholar 

  9. 9.

    D. Rzehak: Beschleunigte Entkohlung von Stahlschmelzen im Vakuum durch Kombination von Sauerstoff und Metalloxiden. PhD thesis (in German), RWTH Aachen, 2013.

  10. 10.

    E. Storti, S. Dudczig, A. Schmidt, G. Schmidt, and C. G. Aneziris, Steel Res. Int., 2017, vol. 88, p. 1700142.

    Article  Google Scholar 

  11. 11.

    A. Asad, M. Haustein, K. Chattopadhyay, C. G. Aneziris, and R. Schwarze, JOM, 2018, vol. 70, pp. 2927-2933.

    CAS  Article  Google Scholar 

  12. 12.

    T. Wetzig, A. Baaske, S. Karrasch, N. Brachhold, M. Rudolph, and C. G. Aneziris, Ceram Int., 2018, vol. 44, pp. 23024-23034.

    CAS  Article  Google Scholar 

  13. 13.

    A. Asad, K. Bauer, K. Chattopadhyay, and R. Schwarze, Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1378 – 1387.

    Article  Google Scholar 

  14. 14.

    A. Asad, K. Chattopadhyay, and R. Schwarze, Metall. Mater. Trans. B, 2018, vol. 49B , pp. 1543 – 1916.

    Google Scholar 

  15. 15.

    A. Asad, E. Werzner, C. Demuth, S. Dudczig, A. Schmidt, S. Ray, C. G. Aneziris, and R. Schwarze, Adv. Eng. Mater., 2017, vol. 19, p. 1700085.

    Article  Google Scholar 

  16. 16.

    J. Smagorinsky, Mon. Weather Rev., 1936, vol. 91, p. 99.

    Article  Google Scholar 

  17. 17.

    H. Kim, J. G. Kim, and Y. Sasaki: ISIJ Int., vol. 50, pp. 678–685, 2010.

    CAS  Article  Google Scholar 

  18. 18.

    A. Asad, C. Kratzsch, S. Dudczig, C. G. Aneziris, and R. Schwarze, Int. J. Heat Fluid Flow, 2016, vol. 62, pp. 299 – 312.

    Article  Google Scholar 

  19. 19.

    R. Schwarze, J. Klostermann, and C. Brücker, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 1688 – 1698.

    CAS  Article  Google Scholar 

Download references


The authors are grateful to the German Research Foundation (DFG) for supporting the Collaborative Research Center CRC 920, subprojects: T01, B06. The computations were performed on a Bull Cluster at the Center for Information Services and High Performance Computing (ZIH) at TU Dresden.

Author information



Corresponding author

Correspondence to Sebastian Neumann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 21, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neumann, S., Asad, A., Kasper, T. et al. Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning. Metall Mater Trans B 50, 2334–2342 (2019).

Download citation