Interaction Between Liquid Steel and AlN Substrate Containing Al-Y-Oxides


Reactions between molten iron, molten silicon steel, and ceramic materials are of great importance from the perspective of the corrosion of refractory material in the steelmaking and continuous casting processes. Reactions between liquid steel and aluminum nitride (AlN) substrate containing Al-Y-oxides were investigated using the sessile drop method at 1833 K (1560 °C). The liquid–substrate interface was observed with the increasing holding time, and the reaction mechanism was studied. In the case of the liquid iron and the silicon steel on the AlN substrate containing Al-Y-oxides, the reaction products on the steel side of the interface between the steel and the substrate were Al-rich Al-Y-oxides and Al2O3 particles. For silicon steel and pure AlN substrate, Al2O3 particles were the main products. Contact angles were lower for liquid iron than for silicon steel due to the higher oxygen content in iron. In addition, the solid–liquid interfacial tension and the work of adhesion between AlN and steel were measured.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    J. C. Labbe and A. Laimeche: J. Eur. Ceram. Soc., 1996, vol. 16, pp. 893-898.

    CAS  Article  Google Scholar 

  2. 2.

    A. Amadeh, J. C. Labbe, A. Laimeche, and P. Quintard: J. Eur. Ceram. Soc., 1996, vol. 16, pp. 403-408.

    CAS  Article  Google Scholar 

  3. 3.

    C. Xuan, H. Shibata, Z. Zhao, P. G. Jönsson, and K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1642-1651.

    CAS  Article  Google Scholar 

  4. 4.

    A. Amadeh, S. Heshmati-Manesh, J. C. Labbe, A. Laimeche, and P. Quintard: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 277-282.

    CAS  Article  Google Scholar 

  5. 5.

    K. Watari: J. Ceram. Soc. Jpn. 2001, vol. 109, pp. 7-16.

    Article  Google Scholar 

  6. 6.

    M. Entezarian and R. A. L. Drew: Mater. Sci. Eng. A, 1996, vol. 212, pp. 206-212.

    Article  Google Scholar 

  7. 7.

    A. Amadeh, J. C. Labbe, and P. E. Quintard: Corros. Sci., 2004, vol. 46, pp. 183-191.

    CAS  Article  Google Scholar 

  8. 8.

    N. Y. Taranets and H. Jones: J. Mater. Sci., 2005, vol. 40. pp. 2355-2359.

    CAS  Article  Google Scholar 

  9. 9.

    A. Koltsov, M. Dumont, F. Hodaj, and N. Eustathopoulos: Mater. Sci. Eng., 2006, vol. 415, pp. 171-176.

    Article  Google Scholar 

  10. 10.

    G. R. Prin, T. Baffie, M. Jeymond, and N. Eustathopoulos: Mater. Sci. Eng. A, 2001, vol. 298, pp. 34-43.

    Article  Google Scholar 

  11. 11.

    H. N. Ho and S. T. Wu: Mater. Sci. Eng., 1998, vol. 248, pp. 120-124.

    Article  Google Scholar 

  12. 12.

    H. Shibata, Y. Watanabe, K. Nakajima, and S. Kitamura: ISIJ Int., 2009, vol. 49, pp. 985-991.

    CAS  Article  Google Scholar 

  13. 13.

    K. Naito, T. Tsuji, and S.Watanabe: Solid State Ionics,1980, vol. 1, pp. 509.

    CAS  Article  Google Scholar 

  14. 14.

    K. Tomioka and H. Suito: Bull. Inst. Adv. Mater. Process., 1991, vol. 47, pp. 10.

    CAS  Google Scholar 

  15. 15.

    H. Mitsutaka and I. Kimihisa: Thermodynamic Data for Steelmaking. Tohoku University Press, Sendai, 2010.

    Google Scholar 

  16. 16.

    J. Chen: Steelmaking Data. Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  17. 17.

    X. Xu, C. Wang, and G. Tu: J. Less Common Met., 1989, vol. 155, pp. 331-337.

    CAS  Article  Google Scholar 

  18. 18.

    M. K. Pake, J. M. Jang, H. J. Kang, and J. J. Pak: ISIJ Int., 2013, vol. 53, pp. 535-537.

    Article  Google Scholar 

  19. 19.

    J. S. Abell, I. R. Harris, B. Cockayne,and B. Lent: J. Mater. Sci., 1974, vol. 9, pp. 527-537.

    CAS  Article  Google Scholar 

  20. 20.

    T. I. Mah and M. D. Petry: J. Am. Ceram. Soc., 1992, vol. 75, pp. 2006-2009.

    CAS  Article  Google Scholar 

  21. 21.

    L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.

    Article  Google Scholar 

  22. 22.

    B. J. Keene: Int. Mater. Rev., 1988, vol. 33, pp. 1-37.

    CAS  Article  Google Scholar 

  23. 23.

    L. Zhao and V. Sahajwalla: ISIJ Int., 2003, vol. 43, pp. 1-6.

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the support from the National Science Foundation China (Grant No. 51725402), Beijing Science and Technology Program of ‘Phase Transformation in Oxides under the Condition’, the Fundamental Research Funds for the Central Universities (Grant No. FRT-TP-17-001C2 and Grant No. FRT-TP-18-096A1), Beijing Science & Technology Program (No. Z171100002217063), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.

Author information



Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, M., Scheller, P.R. et al. Interaction Between Liquid Steel and AlN Substrate Containing Al-Y-Oxides. Metall Mater Trans B 50, 2459–2470 (2019).

Download citation