Skip to main content
Log in

Influence of the Carrier Gas Species on CaO-Gas Mixed Injection in the EAF Steelmaking Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the process of electric arc furnace (EAF) steelmaking, usually the lime powder is sprayed into the molten pool with air as carrier gas to reduce costs. However, because of the nitrogen content requirements in the steel, oxygen or oxygen to mix carbon dioxide was substituted as the carrier gas for the lime powder injection. Lime injection with a burner mode has been reported to promote 100 pct lime injection in the EAF and faster dissolution of lime, but few studies have been made on the effect of the carrier gas on lime powder injection. In this study, four different kinds of carrier gas were used to investigate the influence of carrier gas on lime powder injection in EAF steelmaking. In this study, a CFD model based on the discrete particle model and eddy-dissipation concept model was carried out to investigate the influence of carrier gas species on the CaO-gas mixed injection in EAF steelmaking. The interaction between carrier gas and particles was analyzed, and the influences of carrier gas on the shrouding CH4 were also analyzed. Results show that the decrease of CO2 content in the main carrier gas provides better efficiency of the shrouding combustion and more uniform particle distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Kishida, Y. Nishio, H. Maeda and N. Kimurta: Tetsu-to-Hagané, 1966, vol. 52, pp.1481-1483.

    Article  Google Scholar 

  2. H. Nashiwa, S. Yamaguchi, M. Sato, K. Ieda, M. Ishikawa and Y. Ohkita: Tetsu-to-Hagané, 1982, vol. 68, S203.

    Google Scholar 

  3. K. Taoka, T. Imai, M. Kuga, R. Tachibana, M. Ohnishi and J. Nagai: Kawasaki Steel Giho, 1983, vol. 15, pp.120.

    Google Scholar 

  4. Liu Y, Long C J, Zhan D P, Zhang H S and Jiang Z H: Steelmaking. 2009, vol. 03, pp.1-4.

    Google Scholar 

  5. L. R. Farias,G. A. Irons: Metallurgical Transactions B, 1985, vol. 16, pp. 211-225.

    Article  CAS  Google Scholar 

  6. L. Wolfe, J.P. Massin, T. Hunturk, and W. Ripamonti: SCANMET, 2008, 3: 3rd.

  7. T. Okuno, Md. A. Uddin, Y. Kato, S.B. Lee and Y.H. Kim: ISIJ International, 2017, vol. 57, pp. 1902-1910.

    Article  CAS  Google Scholar 

  8. Miyata M, Higuchi Y: ISIJ International, 2017, vol. 57, pp. 1742-1750.

    Article  CAS  Google Scholar 

  9. Yuu S: ASME-FED, 1991, 121:3.

    Google Scholar 

  10. Ohguchi S, Robertson D. G. C: Ironmaking and Steelmaking, 1984, vol. 11, pp. 262-273.

    CAS  Google Scholar 

  11. KIMURA E: Transactions of the Iron & Steel Institute of Japan, 1983, vol. 23, pp. 522-529.

    Article  CAS  Google Scholar 

  12. Numata M, Higuchi Y: ISIJ international, 2012, vol. 52, pp. 2019-2025.

    Article  CAS  Google Scholar 

  13. R. Shiba, Md. A. Uddin, Y. Kato and S. Kitamura: ISIJ International, 2014, vol. 54, pp. 2754-2760.

    Article  CAS  Google Scholar 

  14. S. Horiuchi, Md. A. Uddin, Y. Kato, Y. Takahashi, and Y. Uchida: ISIJ International, 2014, vol. 54, pp. 82-86.

    Article  CAS  Google Scholar 

  15. Wei G S, Zhu R, Cheng T, Dong K, Yang L Z, Tang T P, Wu X T: ISIJ International, 2018, vol. 58, pp. 842-851.

    Article  CAS  Google Scholar 

  16. Magnussen B F, Hjertager B H: Combustion & Flame., 1977, vol. 16, pp. 719-729.

    Article  Google Scholar 

  17. A. Mardani and S. Tabejama: Int J Hydrogen Energy., 2010, vol. 35, pp. 11324-11331.

    Article  CAS  Google Scholar 

  18. Alam M, Naser J, Brooks Gand Fontana A: Metallurgical and Materials Transactions B, 2010, vol. 41, pp.1354-1367.

    Article  Google Scholar 

  19. Gidaspow D: Continuum & Kinetic Theory Description, 1994, vol.95, pp.1-29.

    Google Scholar 

  20. C.Y. Wen, Y.H. Yu: Chem. Eng. Prog. Symp. Ser., 1966, vol. 62, pp.100-111.

    CAS  Google Scholar 

  21. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89-94.

    CAS  Google Scholar 

  22. B. Lu, W. Wang, J. Li: Chem. Eng. Sci., 2011, vol. 66, pp.4624-4635.

    Article  CAS  Google Scholar 

  23. Papamoschou D, Roshko A: J. Fluid Mech., 1988, vol. 197, pp. 453-477.

    Article  Google Scholar 

  24. Hirt C W, Nichols B D: Journal of computational physics, 1981, vol. 39, pp. 201-225.

    Article  Google Scholar 

  25. Mardani A, Tabejamaat S, Ghamari M: Combustion Theory and Modelling, 2010, vol.14, pp. 747-774.

    Article  CAS  Google Scholar 

  26. Christo F C, Dally B B: Combustion and flame, 2005, vol. 142, pp. 117-129.

    Article  CAS  Google Scholar 

  27. Launder B E, Spalding D B: Lectures in Mathematical Models of Turbulence. Academic Press, Cambridge, 1972.

    Google Scholar 

  28. Wei G S, Zhu R, Wu X T, Yang L Z, Dong K, Cheng T and Tang T P: Metallurgical & Materials Transactions B, 2018, vol. 49, pp. 1405-1420.

    Article  Google Scholar 

  29. Glarborg P, Bentzen L L B: Energy & Fuels, 2007, vol. 22, pp. 291-296.

    Article  Google Scholar 

  30. Zhang J, Mi J, Li P, Wang F and Dally BB: Energy & Fuels, 2015, vol. 29, pp. 4576-4585.

    Article  CAS  Google Scholar 

  31. Zhao R, Liu H, Zhong X J, Wang Z J, Hu H and Qiu J R: Fuel Processing Technology, 2011, vol. 92, pp. 939-945.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the National Natural Science of China (Nos. 51604022 and 51734003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Guangsheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhu, R., Wei, G. et al. Influence of the Carrier Gas Species on CaO-Gas Mixed Injection in the EAF Steelmaking Process. Metall Mater Trans B 50, 2389–2402 (2019). https://doi.org/10.1007/s11663-019-01629-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01629-6

Navigation