Reduction Mechanism of Iron Oxide Briquettes by Carbonaceous Materials Extracted from Blast Furnace Dust


The reducibility of carbonaceous powder extracted from blast furnace dust was investigated. In this study, pickling treatment was used for BF bag dust and BF gravitational dust to extract the carbonaceous material. The structural characteristics of carbonaceous material were studied by X-ray diffraction, scanning electron microscope, and energy-dispersive spectrometer. The reduction of ferric oxide and carbon gasification experiments were researched by thermogravimetry. The results show that the pickled raw coal gives the highest reducibility, which is followed by BF bag dust and BF gravitational dust. The reason for this is that the higher disordered crystalline structure leads to stronger gasification reactivity, and further results in stronger reduction reactivity. Based on the randomized nucleation model, the kinetic analysis shows that the activation energies for the reduction reaction of BF gravitational dust, BF bag dust, and raw coal after pickling are 300.14, 180.43, and 124.62 kJ mol−1, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    H. Zhang: Metal Mine, 2008, vol. 41, pp. 131-136.

    CAS  Google Scholar 

  2. 2.

    X. Zhu: Iron and Steel, 1988, vol. 23, pp. 60-62.

    CAS  Google Scholar 

  3. 3.

    J. Li: Xi’an University of Architecture and Technology, MS, 2006, p. 1.

  4. 4.

    X. She, Q. Xue, J. Dong, J. Wang, H. Zeng, H. Li, Y. Ding, H. Yang, C. Peng: The Chinese Journal of Process Engineering, 2009, vol. 9, pp. 7-12.

    Google Scholar 

  5. 5.

    Hoffman G E, Harada T: Ironmak. Steelmak., 1997, vol. 24, pp. 51-53.

    CAS  Google Scholar 

  6. 6.

    T. Chun: PhD dissertation, Central South University, 2014, p. 6.

  7. 7.

    T. Ding, X. Xiao: Journal of Northeastern University, 1995, vol. 16, pp. 115-119.

    CAS  Google Scholar 

  8. 8.

    E. Donskoi, D. Mcelwain, L. Wibberley: Metallurgical and Materials Transactions B, 2003, Vol. 34, pp. 255-266.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Sun, Y. Han, X. Wei, P. Gao: Journal of thermal analysis and calorimetry, 2016, vol. 123, pp. 703-715.

    CAS  Article  Google Scholar 

  10. 10.

    J. Zhang, Y. Yan, M. Xu, X. Hong, X. Zhang: 2006, vol. 41, pp. 78–81.

  11. 11.

    J. Ju, Y. Dang, Z. Zhao: Iron Steel Vanadium Titan. 2013, vol. 34, pp. 36-40.

    CAS  Google Scholar 

  12. 12.

    J. Zhang, Y. Li, X. Yuan, Z. Liu: Iron and Steel, 2018, vol. 53, pp. 1-10.

    Google Scholar 

  13. 13.

    D.C. Mihaiescu, G. Predeanu, C. Panaitescu: 2014, vol. 76, pp. 227-234.

    CAS  Google Scholar 

  14. 14.

    S. Gupta, V. Sahajwalla, P. Chaubal, T. Youmans: Metallurgical and Materials Transactions B, 2005, 36, pp. 385-394.

    CAS  Article  Google Scholar 

  15. 15.

    K. Wu, R. Ding, Q. Han, S Yang, S. Wei, B. Ni: ISIJ international, 2010, vol. 50, pp. 390–395.

    CAS  Article  Google Scholar 

  16. 16.

    D. Zhao, J. Zhang, G. Wang, A.N. Conejo, R. Xu, H. Wang, J. Zhong: Applied Thermal Engineering, 2016, vol. 108, pp. 1168-1177.

    CAS  Article  Google Scholar 

  17. 17.

    J. Gu, S. Wu, X. Zhang, Y. Wu, J. Gao: Energy Sources, 2009, vol. 31, pp. 232-243.

    CAS  Article  Google Scholar 

  18. 18.

    G. Khokhlova, C. Barnakov, V. Malysheva, A. Popova, Z. Ismagilov: Solid Fuel Chemistry, 2015, vol. 49, pp. 66-72.

    CAS  Article  Google Scholar 

  19. 19.

    L. Lu, V. Sahajwalla, C. Kong, D. Harris: Carbon, 2001, vol. 39, pp. 1821-1833.

    CAS  Article  Google Scholar 

  20. 20.

    Q. Wang, W. Zhao, H. Liu, C. Jia, X. Hao: Energy Procedia, 2012, vol. 17, pp. 869-875.

    CAS  Article  Google Scholar 

  21. 21.

    W. Cao, J. Li, L. Lue: Energy Procedia, 2017, vol. 142, pp. 136-141.

    CAS  Article  Google Scholar 

  22. 22.

    P. Wang, G. Wang, J. Zhang, J. Lee, Y. Li, C. Wang: Applied Thermal Engineering, 2018, vol. 143, pp. 736-745.

    CAS  Article  Google Scholar 

  23. 23.

    S. Vladimir: Renewable Energy, 2006, vol. 31, pp. 1892-1905.

    Article  Google Scholar 

  24. 24.

    Y. Man, J. Feng, F. Li, Q. Ge, J. Zhou: Powder Technology, 2014, vol. 256, pp. 361-366.

    CAS  Article  Google Scholar 

  25. 25.

    R. Rashid, H. Salleh, M. Ani, N. Yunus, T. Akiyama, H. Purwanto: Renewable Energy, 2014, vol. 63, pp. 617-623.

    Article  Google Scholar 

  26. 26.

    X. Li, B. Ma, L. Xu, Z. Hu, X. Wang: Thermochimica Acta 2006, vol. 441, pp. 79–83.

    CAS  Article  Google Scholar 

  27. 27.

    J. Cheng, J. Zhou, J. Liu, Z. Zhou, X. Cao, K. Cen: Journal of Fuel Chemistry and Technology, 2004, vol. 32, pp. 37-42.

    CAS  Google Scholar 

  28. 28.

    X. Li, Y. Lv, B. Ma, S. Jian, H. Tan: Bioresource technology, 2011, vol. 102, pp. 9783-9787.

    CAS  Article  Google Scholar 

  29. 29.

    G. Wang, J. Zhang, X. Hou, J. Shao, W. Geng: Bioresource Technology, 2015, vol. 177, pp. 66–73.

    CAS  Article  Google Scholar 

  30. 30.

    J. Zhou, X. Gong, Y. Wang, W. Li: China Coal, 2005, vol. 31, pp. 52-54.

    Google Scholar 

Download references


This research was financially supported by the National Key R&D Program of China (2017YFB0304300 & 2017YFB0304302) and the National Science Foundation of China (51874025).

Author information



Corresponding author

Correspondence to Zhengjian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 8, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, J., Liu, Z. et al. Reduction Mechanism of Iron Oxide Briquettes by Carbonaceous Materials Extracted from Blast Furnace Dust. Metall Mater Trans B 50, 2296–2303 (2019).

Download citation