Sulfide Transformation with Tellurium Treatment for Y15 Free-Cutting Steel


To investigate the effect of tellurium on the morphology of sulfide, various amounts of tellurium powders were added to the Y15 free-cutting commercial steel melt and then the melt was cooled in different cooling modes. The composition and morphology of sulfide and telluride in steel were analyzed to investigate the mechanism of MnS transformation combined with in situ observation. The results showed that the precipitation of chain-like MnS inclusions was significantly inhibited due to the addition of tellurium, and these MnS inclusions were transformed into complex inclusions with lower aspect ratios, which were composed of MnS and MnTe. In air-cooling mode, the MnS inclusions were effectively spheroidized when the w([Te])/w([S]) in steel was 0.2, whereas tellurium had almost no effect on the morphology of sulfide in furnace-cooling mode. The mechanism of sulfide spheroidization is discussed. The mechanism was verified by in situ observation experiment through high-temperature laser confocal microscopy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    K Oikawa, K Ishida, T Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332-38.

    CAS  Article  Google Scholar 

  2. 2.

    S Luo, Y F Su, M Lu, J Kuo: Mater. Charact., 2013, vol. 82, pp. 103-12.

    CAS  Article  Google Scholar 

  3. 3.

    M Jiang, Z Hu, X Wang, J J PAK: ISIJ Int., 2013, vol. 53, pp. 1386-91.

    CAS  Article  Google Scholar 

  4. 4.

    T Tomita: J. Mater. Sci., 1994, vol. 29, pp. 2873-78.

    Article  Google Scholar 

  5. 5.

    T Lis: Metalurgija., 2009, vol. 48, pp. 95-98.

    CAS  Google Scholar 

  6. 6.

    X Zhang, L Zhang, W Yang, Y Wang, T Liu, Y Dong: Metall. Mater. Trans. B, 2017, vol. 48, pp. 701-12.

    Article  Google Scholar 

  7. 7.

    L Leon, R B John, M Alex, K Michael: Metall. Mater. Trans. B, 1970, vol. 1, pp. 3341–50.

    Google Scholar 

  8. 8.

    Y Guo, S He, G Chen, Q Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2549-2557.

    Article  Google Scholar 

  9. 9.

    L Zheng, A Malfliet, P Wollants, B Blanpain, M Guo: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2447-58.

    Article  Google Scholar 

  10. 10.

    N E Luiz: Mech. Eng. B , 2008, vol. 222, pp. 347-60.

    CAS  Article  Google Scholar 

  11. 11.

    H Yaguchi, N Onodera: Trans. Inst. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 1051-59.

    CAS  Article  Google Scholar 

  12. 12.

    X Shao, X Wang, M Jiang, W Wang, F Huang: ISIJ Int., 2011, vol. 51, pp. 1995-01.

    CAS  Article  Google Scholar 

  13. 13.

    X Zhang, W Lu, R Qin: Mater. Res. Innov., 2015, vol. 18, pp. 244-248.

    Article  Google Scholar 

  14. 14.

    X Zou, J Sun, H Matsuura, C Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-2173.

    Article  Google Scholar 

  15. 15.

    H Mu, T Zhang, L Yang, R R Xavier, R J Fruehan, B A Webler: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3375-3383.

    Article  Google Scholar 

  16. 16.

    T Li, T Taniguchi, K Uesugi: Metall. Mater. Trans. B, 2013, vol. 44, pp. 750-61.

    Article  Google Scholar 

  17. 17.

    J Yang, W Tang, W Chen, J Yang: Metal Mater. Metall. Eng., 2015, vol. 43, pp. 9-15. (In Chinese)

    Google Scholar 

  18. 18.

    J Qi, W Yang, W Zhu, T Qu, Y Liu, Y Ji: Iron Steel, 2013, vol. 48, pp. 79-83. (In Chinese)

    CAS  Google Scholar 

  19. 19.

    P Shen, Q Yang, D Zhang, Y Yang, J Fu: Metals-basel, 2018, vol. 8, 639.

    Article  Google Scholar 

  20. 20.

    T. T’Ien, L.H. Van Vlack, R.J. Martin: The System MnTe-MnS: Progress Report, New York, 1967.

  21. 21.

    M E Schlesinger: J. Phase Equilib., 1998, vol. 19, pp. 591-596.

    CAS  Article  Google Scholar 

  22. 22.

    V Raghavan: J. Phase Equilib. Diff., 2011, vol. 32, pp. 147-151.

    CAS  Article  Google Scholar 

  23. 23.

    L Zhang, Y Ren, H Duan, W Yang, L Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.

    Article  Google Scholar 

  24. 24.

    C Shi, X Chen, H Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295-02.

    CAS  Article  Google Scholar 

  25. 25.

    J Cissé, G F Bolling: J. Cryst. Growth, 1971, vol. 10, pp. 67-76.

    Article  Google Scholar 

  26. 26.

    F R Juretzko, D M Stefanescu, B K DhindawK, S Sen, P A Curreri: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1691-1696.

    CAS  Article  Google Scholar 

  27. 27.

    H Okamoto, L E Tanner: Bull. Alloy Phase Diagrams, 1990, vol. 11, pp. 371-376.

    CAS  Article  Google Scholar 

  28. 28.

    P. Chen, C. Zhu, G. Li, Y. Dong, Z. Zhang: ISIJ Int., 2017, ISIJINT-2017-007.

  29. 29.

    Y Wang, J Yang, X Xin, R Wang, L Xu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1378-1389.

    Article  Google Scholar 

  30. 30.

    D You, S K Michelic, G Wieser, C Bernhard: J. Mater. Sci., 2017, vol. 52, pp. 1797-1812.

    CAS  Article  Google Scholar 

  31. 31.

    M T Nagata, J G Speer, D K Matlock: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3099-3110.

    CAS  Article  Google Scholar 

  32. 32.

    Y C Lee, J C Chen: Opt. Mater., 1999, vol. 12, pp. 83-91.

    CAS  Article  Google Scholar 

Download references


This research is supported by the National Science Foundation of China (Nos. 51574190 and 51574020).

Author information



Corresponding author

Correspondence to Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 7, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, F., Yang, S. et al. Sulfide Transformation with Tellurium Treatment for Y15 Free-Cutting Steel. Metall Mater Trans B 50, 2284–2295 (2019).

Download citation