Development of a Reliable Kinetic Model for Ladle Refining

Abstract

Kinetic modeling of ladle refining can be used by steel plants to improve steelmaking and to produce cleaner steels. It can also help researchers to understand the process better. There have been several recent attempts to develop a kinetic model that can predict changes in steel, slag, and inclusion compositions with time. Often the models require parameters that can be difficult to measure under plant conditions, and model limitations have not been discussed in detail. In this study, a two-parameter kinetic model has been developed to predict changes in steel, slag, and inclusion compositions during ladle refining; the two parameters are the mass-transfer coefficient in steel and the inclusion flotation rate constant. The model was based on FactSage macro-processing. Examples of results show that the model can be used to diagnose effects of steel and slag sampling practices and to estimate alloy dissolution time. The model results demonstrate that the presence of solids in slag can significantly reduce the rate of steel–slag reaction while maintaining a high inclusion flotation rate. Some limitations of the model are discussed: the overprediction of calcium transfer to alumina inclusions and the absence of information on inclusions originating from entrained slag.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Adapted from Ref. [27], with permission of the Association for Iron and Steelmaking Technology)

Fig. 3
Fig. 4
Fig. 5

Reprinted from Ref. [27] with permission of the Association for Iron and Steel Technology (AIST)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    [1] K. Shibata, Y. Mizukaml, and T. Kitamura: ISIJ Int., 1991 vol. 31 (11), pp. 1322–1328.

    Article  Google Scholar 

  2. 2.

    [2] S.-H. Kim and R. J. Fruehan: Metall. Trans. B, 1987, vol. 18 (4), pp. 673–680.

    Article  Google Scholar 

  3. 3.

    [3] D. Roy, P. C. Pistorius, and R. J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44 (5), pp. 1086–1094.

    Article  Google Scholar 

  4. 4.

    [4] D. Roy, P. C. Pistorius, and R. J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44 (5), pp. 1095–1104.

    Article  Google Scholar 

  5. 5.

    [5] K. J. Graham and G. A. Irons: AISTech 2008 Proc., Associtation for Iron & Steel Technology, Warrendale, 2008, pp. 1181–1194.

    Google Scholar 

  6. 6.

    [6] P. K. Iwamasa and R. J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28 (1), pp. 47–57.

    CAS  Article  Google Scholar 

  7. 7.

    [7] T. Kargul and J. Falkus: Steel Res. Int., 2010, vol. 81 (11), pp. 953–958.

    CAS  Article  Google Scholar 

  8. 8.

    [8] J. Peter, K. D. Peaslee, D. G. C. Robertson, M. Hall, and B. G. Thomas: AISTech 2005 Proc., Proc., Associtation for Iron & Steel Technology, Warrendale, 2005, pp. 959–967.

    Google Scholar 

  9. 9.

    [9] C. Cicutti, C. Capurro, and C. Cerrutti: in 9th Int. Conf. Exhib. on Clean Steel, Simulation and Model Calculations, Hungarian Mining and Metallurgical Society (OMBKE), Budapest, 2015.

    Google Scholar 

  10. 10.

    [10] G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40 (2), pp. 121–128.

    CAS  Article  Google Scholar 

  11. 11.

    [11] J. H. Shin, Y. Chung, and J. H. Park: Metall. Mater. Trans. B, 2016, 48(1), pp. 46-59.

    Google Scholar 

  12. 12.

    [12] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2110–2117.

    CAS  Article  Google Scholar 

  13. 13.

    [13] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2118–2125.

    CAS  Article  Google Scholar 

  14. 14.

    [14] A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang and S. Kitamura: ISIJ Int., 2014, vol. 54 (11), pp. 2569–2577.

    CAS  Article  Google Scholar 

  15. 15.

    [15] M. -A. Van Ende and I. H. Jung: Metall. Mater. Trans. B, 2017, vol. 48 (1), pp. 28-36.

    Article  Google Scholar 

  16. 16.

    [16] S. Ohguchi, D. G. C. Robertson, B. Deo, P. Grieveson, and J. H. E. Jeffes: Ironmaking and Steelmaking, 1984, vol. 11 (4), pp. 202–213.

    CAS  Google Scholar 

  17. 17.

    [17] A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54 (10), pp. 2230–2238.

    CAS  Article  Google Scholar 

  18. 18.

    [18] D. Kumar and P. C. Pistorius: AISTech 2016 Proc., Associtation for Iron & Steel Technology, Warrendale, 2016, pp. 1151–1160.

    Google Scholar 

  19. 19.

    [19] D. Tang, M. E. Ferreira, and P. C. Pistorius: Microsc. Microanal., 2017, vol. 23 (6), 1082-1090.

    CAS  Article  Google Scholar 

  20. 20.

    C. Merlet: X-Ray Opt. Microanal. 1992: Proc. 13th Int. Congr., 1992, pp. 123–26.

  21. 21.

    [21] C. Merlet: Mikrochim. Acta, 1994, vols. 114–115, pp. 363–376.

    Article  Google Scholar 

  22. 22.

    [22] J. Tan and P. C. Pistorius: AISTech 2013 Proc., Associtation for Iron & Steel Technology, Warrendale, 2013, pp. 1301–1311.

    Google Scholar 

  23. 23.

    [23] S. P. T. Piva, D. Kumar, and P. C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48(1), pp. 37–45.

    Article  Google Scholar 

  24. 24.

    [24] K. H. Javed: Science and Practice of Liquid-Liquid Extraction, Chapter-4. Clarendon Press, Oxford, 1992.

    Google Scholar 

  25. 25.

    D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50, pp. 181–191. https://doi.org/10.1007/s11663-018-1436-z.

    CAS  Article  Google Scholar 

  26. 26.

    D. Kumar and P.C. Pistorius: Adv. Molten Slags Fluxes Salts Proc. 10th Int. Conf. Molten Slags Fluxes Salts, 2016, pp. 145–53.

  27. 27.

    [27] D. Kumar, K. C. Ahlborg, and P. C. Pistorius: AISTech 2017 Proc., Association for Iron & Steel Technology, Warrendale, 2017, pp. 2693–2706.

    Google Scholar 

  28. 28.

    [28] S. Yngve: Scand. J. Metall., vol. 7, pp. 81–87, 1978.

    Google Scholar 

  29. 29.

    [29] C. A. Abel, R. J. Fruehan, and A. Vassilicos: Trans. Iron Steel Soc., 1995, vol. 49 (August), pp. 49–64.

    Google Scholar 

  30. 30.

    [30] K. Schwerdtfeger: Arch. Eisenhüttenwes., 1983, vol. 54 (3), pp. 87–98.

    CAS  Article  Google Scholar 

  31. 31.

    [31] N. Bannenberg, B. Bergmann, and H. Gaye: Steel Res. Int., 1992, vol. 63 (10), pp. 431–437.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 21, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Ahlborg, K.C. & Pistorius, P.C. Development of a Reliable Kinetic Model for Ladle Refining. Metall Mater Trans B 50, 2163–2174 (2019). https://doi.org/10.1007/s11663-019-01623-y

Download citation