Skip to main content
Log in

Novel Cooling Rate Correlations in Molten Metal Gas Atomization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2019

This article has been updated

Abstract

The cooling rate in molten metal gas atomization is the key determining factor for the microstructure of metal powders. Mathematical expressions for cooling rates often include the melt droplet diameter and a pre-exponential factor describing the materials and gas properties. A new mathematical cooling rate correlation for rapidly solidified melt droplets is proposed based on heat flow considerations during gas atomization. The model approach takes process conditions such as gas-to-melt mass flow ratio and the initial gas temperature into account. The mathematical formulation was experimentally developed using secondary dendrite arm spacing method. For this purpose, a Cu-6wt pct Sn alloy was atomized with close-coupled (CCA) and free-fall atomization (FFA). A novel approach was made to predict the pre-exponential factor that allows the transferability to other materials. Our correlation for the cooling rate and the pre-exponential factor was validated by experimental data from the literature. The novel correlation type is valid for two different atomizing systems (FFA and CCA), suggesting that it may be applicable to entirely different gas atomization systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 14 February 2019

    Author notes two two typos in Equation 2.

Abbreviations

a :

Constant to calculate the cooling rate through SDAS

a i :

Model parameters

c g :

Specific heat capacity of the gas, J kg−1 K−1

\( c_{{{\text{p}}_{\text{L}} }} \) :

Specific heat capacity of the liquid melt droplet, J kg−1 K−1

\( c_{{{\text{p}}_{\text{S}} }} \) :

Specific heat capacity of the solid melt droplet, J kg−1 K−1

CR:

Cooling rate, K s−1

D :

Nozzle outlet diameter, m

d p :

Droplet diameter, m

d 50,3 :

Mass median particle diameter, m

f s :

Solid fraction

h :

Heat transfer coefficient, W m−2 K−1

k g :

Thermal conductivity of the gas, W m−1 K−1

k l :

Thermal conductivity of the melt droplet, W m−1 K−1

L :

Distance between first adjacent arm to the last, m

m :

Constant to calculate the SDAS

\( \dot{m}_{G} \) :

Gas mass flow rate, kg s−1

\( \dot{m}_{L} \) :

Melt mass flow rate, kg s−1

n:

Constant to calculate the cooling rate through SDAS

n arms :

Number of counted arms to calculate SDAS, #

p :

Atomization pressure, MPa

q :

Heat flux, W m−2

r :

r-axis, m

R:

Residuum

T 0 :

Ambient gas temperature (293 K)

T G :

Gas temperature, K

\( T_{{G_{0} }} \) :

Initial gas temperature, K

T L :

Liquidus temperature, K

T m :

Temperature of the melt droplet at solid fraction = 0.5, K

T M :

Melt temperature, K

T s :

Solidus temperature, K

u d :

Droplet velocity, m s−1

u g :

Gas velocity, m s−1

z :

z-axis, m

Δh :

Latent heat of fusion, J kg−1

Δt :

Solidification time, s

ΔT :

Temperature difference between melt droplet and surrounding gas, K

ΔT M :

Superheated melt temperature, K

Δu :

Relative velocity m s−1

η :

Dynamic viscosity of the gas, N s m−2

λ 1 :

Primary dendrite arm spacing, m

λ 2 :

Secondary dendrite arm spacing, m

ρ g :

Density of the gas, kg m−3

ρ f :

Density of the melt droplet at solid fraction = 0.5 kg m−3

σ g :

Geometric standard deviation

ψ :

Materials and gas properties

Bi:

Biot number

CCA:

Close-coupled atomization

FFA:

Free-fall atomization

GMR:

Gas-to-melt mass flow ratio

HG:

Hot gas atomization

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

RT :

Atomization at ambient temperature

SDAS:

Secondary dendrite arm spacing, m

References

  1. E.J. Lavernia, J. Baram: J. Mater. Sci. Lett., 1989, vol. 8, pp. 612-614.

    Article  Google Scholar 

  2. D.A. Porter, K.E. Easterling, M. Sherif: Phase transformations in metals and alloys, 3th ed., CRC press, Boca Raton, 2009.

    Google Scholar 

  3. A.A. Bogno, U. Dahlborg, M. Calvo-Dahlborg, C. Riveros, N. Ciftci, H. Henein, D. Sediako: J. Non. Cryst. Solids, 2016, vol. 432, pp. 466-470.

    Article  Google Scholar 

  4. N. Ciftci, N. Ellendt, R. von Bargen, H. Henein, L. Mädler, V. Uhlenwinkel: J. Non. Cryst. Solids, 2014, vol. 394-395, pp. 36-42.

    Article  Google Scholar 

  5. A.M. Mullis, I.N. McCarthy, R.F. Cochrane (2011) J. Mater. Process. Technol. vol. 211, pp. 1471-1477.

    Article  Google Scholar 

  6. F. Deirmina, M. Pellizzari, M. Federici: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1910-1920.

    Article  Google Scholar 

  7. M. Vattur Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, L. Nyborg (2017) Metall. Mater. Trans. A, vol. 49A, pp. 255-263.

    Google Scholar 

  8. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann: Acta Mater., 2016, vol. 117, pp. 371-392.

    Article  Google Scholar 

  9. K.G. Prashanth, H. Shakur Shahabi, H. Attar, V.C. Srivastava, N. Ellendt, V. Uhlenwinkel, J. Eckert, S. Scudino (2015) Addit. Manuf. vol. 6, pp. 1-5.

    Article  Google Scholar 

  10. S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert: Mater. Lett., 2015, vol. 156, pp 202-204.

    Article  Google Scholar 

  11. M. Bram, M. Bitzer, H.P. Buchkremer, D. Stöver: J. Mater. Eng. Perform., 2012, vol. 21, pp. 2701-2712.

    Article  Google Scholar 

  12. M.R. German: Materials, 2013, vol. 6, pp. 3641-3662.

    Article  Google Scholar 

  13. D. Bergmann, U. Fritsching, K. Bauckhage: Int. J. Therm. Sci., 2000, vol. 39, pp. 53-62.

    Article  Google Scholar 

  14. P.S. Grant, B. Cantor, L. Katgerman: Acta Metall. Mater., 1993, vol. 41, pp. 3097-3108.

    Article  Google Scholar 

  15. P. Mathur, D. Apelian, A. Lawley: Acta Metall., 1989, vol. 37, pp. 429-443.

    Article  Google Scholar 

  16. A.V. Freyberg, M. Buchholz, V. Uhlenwinkel, H. Henein: Metall. Mater. Trans. B, 2003, vol. 34, pp. 243-253.

    Article  Google Scholar 

  17. N. Tiedje, P.N. Hansen, A.S. Pedersen: Metall. Mater. Trans. A, 1996, vol. 27, pp. 4085-4093.

    Article  Google Scholar 

  18. D.M. Herlach, D.M. Matson: Solidification of containerless undercooled melts, 1st ed., Wiley-VCH, Weinheim, 2012.

    Book  Google Scholar 

  19. C.T. Crowe: Computational Techniques for Two-Phase Flow and Heat Transfer, in: F. Kreith, R.F. Boehm (Eds.) Direct-Contact Heat Transfer, Springer Berlin Heidelberg, 1988, pp. 41-59.

    Chapter  Google Scholar 

  20. N. Ellendt, N. Ciftci, C. Goodreau, V. Uhlenwinkel, L. Madler: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 117, 012057.

    Article  Google Scholar 

  21. W.E. Ranz, W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-146.

    Google Scholar 

  22. S. Whitaker: AIChE J., 1972 vol. 18, pp. 361-371.

    Article  Google Scholar 

  23. J.K. Fiszdon: Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 749-761.

    Article  Google Scholar 

  24. V. Gnielinski: Forschung im Ingenieurwesen A, 1975, vol. 41, pp. 145-153.

    Article  Google Scholar 

  25. P.R. Yearling, R.D. Gould: Convective heat and mass transfer from single evaporating water, methanol and ethanol droplets, American Society of Mechanical Engineers, New York, 1995.

    Google Scholar 

  26. N. Ellendt, A.M. Lumanglas, S.I. Moqadam, L. Mädler: Int. J. Therm. Sci., 2018, vol. 133, pp. 98-105.

    Article  Google Scholar 

  27. A. Lampe, U. Fritsching: Hot gas atomization of complex liquids for powder production, in: U. Fritsching (Ed.), Process-Spray: Functional particles produced in spray processes, Springer, Berlin, 2016, pp. 751-794.

    Chapter  Google Scholar 

  28. A.J. Yule, J.J. Dunkley: Atomization of melts: For production and spray deposition, 1st ed., Clarendon Press, Oxford, 1994.

    Google Scholar 

  29. R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, L. Schultz: Mater. Trans. JIM, 2002, vol. 43, pp. 1670-1675.

    Article  Google Scholar 

  30. X. Liang, E.J. Lavernia: Mater. Sci. Eng., A, 1993, vol. 161, pp. 221-235.

  31. J.B. Wiskel, K. Navel, H. Henein, E. Maire: Can. Metall. Q., 2002, vol. 41, pp. 193-204.

    Article  Google Scholar 

  32. E.-S. Lee, S. Ahn: Acta Metall. Mater., 1994, vol 42, pp. 3231-3243.

    Article  Google Scholar 

  33. D. Liu, J. Zhao, H. Ye: Mater. Sci. Eng. A, 2004, vol. 372, pp. 229-234.

    Article  Google Scholar 

  34. S.K. Pillai, T. Ando, Int. J. Therm. Sci., 2009, vol. 48, pp. 1494-1500.

    Article  Google Scholar 

  35. P.R. Sahm, I. Egry, T. Volkmann: Schmelze, Erstarrung, Grenzflächen: Eine Einführung in die Physik und Technologie flüssiger und fester Metalle, Vieweg, Braunschweig, Wiesbaden, 2001.

    Google Scholar 

  36. B. Cantor: Fundamentals of Rapid Solidification, in: P.R. Sahm, H. Jones, C.M. Adam (Eds.): Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies, Springer Netherlands, Dordrecht, 1986, pp. 3-28.

    Chapter  Google Scholar 

  37. C.G. Levi, R. Mehrabian: Metall. Mater. Trans. A, 1982, vol. 13, pp. 221-234.

    Article  Google Scholar 

  38. M.C. Flemings: Metall. Mater. Trans. B, 1974, vol. 5, pp. 2121-2134.

    Article  Google Scholar 

  39. W. Kurz, D.J. Fisher: Fundamentals of solidification, 3th ed., Trans Tech Publications Ltd., Aedermannsdorf, 1989.

    Google Scholar 

  40. M. Rappaz, J.A. Dantzig: Solidfication, 2nd ed. EPFL Press, Lausanne, 2017.

    Google Scholar 

  41. H. Henein, V. Buchoud, R.-R. Schmidt, C. Watt, D. Malakov, C.-A. Gandin, G. Lesoult, V. Uhlenwinkel: Can. Metall. Q., 2010, vol. 49, pp. 275-292.

    Article  Google Scholar 

  42. M. Imagumbai: ISIJ Int., 1994, vol. 34, pp. 986-991.

    Article  Google Scholar 

  43. J.-O. Choi: Einfluss der Erstarrungsgeschwindigkeit auf Gefüge und Eigenschaften technischer Kupferlegierungen, Max-Planck-Institut für Metallforschung, Universität Stuttgart 1987.

  44. L. Kallien: Herstellung schnell erstarrter und hochunterkühlter Metallpulver, Fakültät für Bergbau, Hüttenwesen und Geowissenschaften RWTH Aachen, VDI Verlag, 1988.

    Google Scholar 

  45. N. Ciftci, N. Ellendt, E. S. Barreto, L. Mädler, V. Uhlenwinkel: Adv. Powder Technol., 2018, vol. 29, pp. 380-385.

    Article  Google Scholar 

  46. N. Ciftci, N. Ellendt, L. Mädler, V. Uhlenwinkel: W.P. (Ed.) EPMA, Hamburg, Germany, 2016.

  47. D. Schwenck, N. Ellendt, J. Fischer-Bühner, P. Hofmann, V. Uhlenwinkel: Powder Metall., 2017, vol. 60, pp. 198-207.

    Article  Google Scholar 

  48. H. Jones: Rapid Solidification Processing: Principles and Technologies, in R. Mehrabian, B.H. Kear, M. Cohen (Eds.): Rapid Solidification Processing, Claitor’s, Baton Rouge, 1978, pp. 28-45.

    Google Scholar 

  49. D. Eskin, Q. Du, D. Ruvalcaba, L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 405, pp. 1-10.

    Article  Google Scholar 

  50. J.A. Horwath, L.F. Mondolfo: Acta Metall., 1962, vol. 10, pp. 1037-1042.

    Article  Google Scholar 

  51. G. Kasperovich, T. Volkmann, L. Ratke, D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183-1191.

    Article  Google Scholar 

  52. J.A. Sarreal, G.J. Abbaschian: Metall. Mater. Trans. A, 1986, vol. 17, pp. 2063-2073.

    Article  Google Scholar 

  53. A.M. Mullis, L. Farrell, R.F. Cochrane, N.J. Adkins: Metall. Mater. Trans. B, 2013, vol. 44, pp. 992-999.

    Article  Google Scholar 

  54. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, John Wiley and Sons, New York, 1960.

    Google Scholar 

  55. A.J. Drehmann, D. Turnbull: Scr. Metall., 1981, vol. 15, pp. 543-548.

    Article  Google Scholar 

  56. A.J. Drehmann, D. Turnbull (1982) Materials processing in the reduced gravity environment of space. In: G.E. Rindone (Ed.): MRS Symposia Proa., North-Holland, New York

    Google Scholar 

  57. F. Gillessen, D.M. Herlach, B. Feuerbacher: J. Less. Common Met., 1988, vol. 145, pp. 145-152.

    Article  Google Scholar 

  58. S.W. He, Y. Liu, S. Guo: Rare Metal. Mat. Eng., 2009, vol. 38, pp. 353-356.

    Google Scholar 

  59. K. Li, C. Song, Q. Zhai, M. Stoica, J. Eckert: J. Mater. Res., 2014, vol. 29, pp. 527-534.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of subprojects S01 ‘Process to Generate Rapidly Cooled, Homogenous Samples’ and U01 ‘Generation of spherical microscopic samples with single droplet solidification’ of the Collaborative Research Center SFB 1232 “Farbige Zustände” by the German Research Foundation (DFG) is gratefully acknowledged. We also thank F. Peschel, R. Lehmann, S. Evers for their experimental support. Additionally, the authors wish to thank F. Mostaghimi, J. Eitzen, C. O’Fuarthain for useful discussions and their helpful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Uhlenwinkel.

Additional information

Manuscript submitted August 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciftci, N., Ellendt, N., Coulthard, G. et al. Novel Cooling Rate Correlations in Molten Metal Gas Atomization. Metall Mater Trans B 50, 666–677 (2019). https://doi.org/10.1007/s11663-019-01508-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01508-0

Navigation