Skip to main content
Log in

Agglomeration of Solid Inclusions in Molten Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Agglomeration of alumina inclusions in the molten steel is investigated through the free energy analysis of the cavitation between inclusions. The mechanism of agglomeration, the activation state, the stable state, the equilibrium state, and the critical separation for the cavitation are discussed. The equilibrium energy is proportional to the square of the inclusion radius, EEq = 0.710R 2P , while the critical separation is directly proportional to the inclusion radius, dC = 0.146RP. Agglomerates of micron inclusions are hardly broken up by the turbulence in steelmaking practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1. W. Pietsch: Agglomeration in Industry: Occurrence and Applications, Wiley, Hoboken, NJ, 2008.

    Google Scholar 

  2. 2. W. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 63–70.

    Article  Google Scholar 

  3. 3. W. Liu, L. Qiu, Z. Wang, Q. Li, X. Ye, and Y. Han: J. Tsinghua Univ., 2013, vol. 53, pp. 573–77.

    Google Scholar 

  4. 4. A. Realpe, C. Velazquez, and L. Obregon: AIChE J., 2009, vol. 55, pp. 1127–34.

    Article  Google Scholar 

  5. 5. A.P. Wemhoff and A.J. Webb: Int. J. Heat Mass Transfer, 2016, vol. 97, pp. 432–38.

    Article  Google Scholar 

  6. 6. D. Amaro-Gonzalez and B. Biscans: Powder Technol., 2002, vol. 128, pp. 188–94.

    Article  Google Scholar 

  7. 7. L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1809–25.

    Article  Google Scholar 

  8. 8. W. Yang, H. Duan, L. Zhang, and Y. Ren: JOM, 2013, vol. 65, pp. 1173–80.

    Article  Google Scholar 

  9. 9. L. Zhang: JOM, 2013, vol. 65, pp. 1138–44.

    Article  Google Scholar 

  10. 10. K. Nogi and K. Ogino: Can. Metall. Q., 1983, vol. 22, pp. 19–28.

    Article  Google Scholar 

  11. 11. K. Ogino, A. Adachi, and K. Nogi: Tetsu-to-Hagané, 1973, vol. 59, pp. 1237–44.

    Google Scholar 

  12. 12. V.V. Yaminsky, V.S. Yushchenko, E.A. Amelina, and E.D. Shchukin: J. Coll. Interface Sci., 1983, vol. 96, pp. 301–06.

    Article  Google Scholar 

  13. 13. V.S. Yushchenko, V.V. Yaminsky, and E.D. Shchukin: J. Coll. Interface Sci., 1983, vol. 96, pp. 307–14.

    Article  Google Scholar 

  14. 14. H.K. Christenson and P.M. Claesson: Science, 1988, vol. 239, pp. 390–92.

    Article  Google Scholar 

  15. 15. R.M. Pashley, P.M. McGuiggan, B.W. Ninham, and D.F. Evans: Science, 1985, vol. 229, pp. 1088–89.

    Article  Google Scholar 

  16. 16. K. Sasai: ISIJ Int., 2014, vol. 54, pp. 2780–89.

    Article  Google Scholar 

  17. 17. K. Sasai: ISIJ Int., 2016, vol. 56, pp. 1013–22.

    Article  Google Scholar 

  18. 18. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: ISIJ Int., 2016, vol. 56, pp. 926–35.

    Article  Google Scholar 

  19. 19. S. Singh, J. Houston, F. Van Swol, and C.J. Brinker: Nature, 2006, vol. 442, p. 526.

    Article  Google Scholar 

  20. 20. H. Duan, Y. Ren, and L. Zhang: JOM, 2018, vol. 70, pp. 2128–38.

    Article  Google Scholar 

  21. 21. H. Duan, L. Zhang, B.G. Thomas, and A.N. Conejo: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2722–43.

    Article  Google Scholar 

  22. 22. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.

    Article  Google Scholar 

Download references

The authors are grateful for the support from the National Key R&D Program of China (2017YFB0304000 and 2017YFB0304001), the National Science Foundation of China (Grant No. 51725402), the Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality Steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2), School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Additional information

Manuscript submitted September 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Ren, Y., Thomas, B.G. et al. Agglomeration of Solid Inclusions in Molten Steel. Metall Mater Trans B 50, 36–41 (2019). https://doi.org/10.1007/s11663-018-1478-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1478-2

Navigation