Skip to main content
Log in

Design and Application of CSC-Roll for Heavy Reduction of the Bloom Continuous Casting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Center quality control is a key issue affecting large-section bloom production and product quality. The central convex roll could avoid the bloom side part and yield a high reduction amount, which benefit the implement of heavy reduction (HR) for bloom continuous casting process without upgrading the mechanical and hydraulic system of withdrawal and straightening machine. In this work, a curving surface convex roll (CSC-Roll), which could significantly improve bloom center quality, was designed by finite element simulation for a 360 mm × 450 mm #45 steel continuous casting bloom. The optimal roll surface shape of the CSC-Roll was determined based on an analysis of the distribution of the reduction amount in the bloom center and the strain of the bloom centerline and inner surface. The calculation results showed that the optimal size of the CSC-Roll was 200 mm in convex platform region length, 30 mm in convex platform region height, and 80 mm in gradient curvature region length. The bloom heat transfer and deformation behavior in the CSC-Roll reduction process were then analyzed. The results showed that in the CSC-Roll HR process, 61.71 pct of the reduction amount could be transmitted to the inner side of the porosity zone. Macrographs of the 360 mm × 450 mm #45 steel continuous casting bloom proved that the bloom center quality was significantly improved after CSC-Roll HR was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A. Loucif, E.B. Fredj, N. Harris, D. Shahriari, M. Jahazi and L.P. Lapierre-Boire: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1046-55.

    Article  Google Scholar 

  2. H.B. Sun and J.Q. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 936-46.

    Article  Google Scholar 

  3. B. Petrus, K. Zheng, X. Zhou, B.G. Thomas and J. Bentsman: Metall. Mater. Trans. B, 2011, vol. 42, pp. 87-103.

    Article  Google Scholar 

  4. K. Ayata, H. Mori, K. Taniguchi and H. Matsuda: ISIJ Int., 1995, vol. 35, pp. 680-5.

    Article  Google Scholar 

  5. D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 444-55.

    Article  Google Scholar 

  6. S. Ogibayashi, M. Kobayashi, M. Yamada and T. Mukai: ISIJ Int., 1991, vol. 31, pp. 1400-7.

    Article  Google Scholar 

  7. H. Preßlinger, S. Ilie, P. Reisinger, A. Schiefermüller, A. Pissenberger, E. Parteder and C. Bernhard: ISIJ Int., 2006, vol. 46, pp. 1845-51.

    Article  Google Scholar 

  8. R. Thome and K. Harste: ISIJ Int., 2006, vol. 46, pp. 1839-44.

    Article  Google Scholar 

  9. C.H. Moon, K.S. Oh, J.D. Lee, S.J. Lee and Y. Lee: ISIJ Int., 2012, vol. 52, pp. 1266-72.

    Article  Google Scholar 

  10. C. Ji, S. Luo and M.Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 504-10.

    Article  Google Scholar 

  11. H. Tomono, Y. Hitomi, S. Ura, A. Teraguchi, K. Iwata and K. Yasumoto: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 917-22.

    Article  Google Scholar 

  12. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.

    Article  Google Scholar 

  13. X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2014, vol. 85, pp. 1533-43.

    Article  Google Scholar 

  14. C. Ji, C.H. Wu and M.Y. Zhu: JOM, 2016, vol. 68, pp. 3107-15.

    Article  Google Scholar 

  15. S. Nabeshima, H. Nakato, T. Fujii, T. Fujimura, K. Kushida and H. Mizota: ISIJ Int., 1995, vol. 35, pp. 673-9.

    Article  Google Scholar 

  16. Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81-8.

    Article  Google Scholar 

  17. J.P. Zhao, L. Liu, W.W. Wang, W.J. Zhou and H. Lu: Ironmaking Steelmaking, 2017, vol. 44, pp. 1-8.

    Article  Google Scholar 

  18. X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2014, vol. 85, pp. 645-58.

    Article  Google Scholar 

  19. Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.

    Google Scholar 

  20. M Okimori, R Nishihara, S Fukunaga, and Y Okamioto: Tetsu-to-Hagane, 1994, vol. 80, pp. T120-3.

    Google Scholar 

  21. M. Takubo, Y. Matsuoka, Y. Miura, H. Higashi and S. Kittaka: The METEC and 2nd ESTAD. Session, 2015, pp. 307–18.

  22. J. K. Brimacombe and K. Sorimachi: Metall. Trans. B, 1977, vol. 8, pp. 489-505.

    Article  Google Scholar 

  23. C.S. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35, pp. 1151-72.

    Article  Google Scholar 

  24. C.H. Wu, C. Ji and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1346-59.

    Article  Google Scholar 

  25. S.P. Dudra and Y.T. Im: Int. J. Mach. Tools. Manuf, 1990, vol. 30, pp. 65-75.

    Article  Google Scholar 

  26. Y.S. Lee, S.U. Lee, C. Vantyne, B.D. Joo and Y.H. Moon: J. Mater. Process. Technol, 2011, vol. 211, pp. 1136-45.

    Article  Google Scholar 

  27. J.J. Park: Met. Mater. Int., 2011, vol. 19, pp.259-65.

    Article  Google Scholar 

  28. J.J. Park: ISIJ Int., 2013, vol. 53, pp. 1420-6.

    Article  Google Scholar 

  29. Y.M. Won, T.J. Yeo, K.H. Oh, J.K. Park, J. Choi and C.H. Yim: ISIJ Int., 1998, vol. 38, pp. 53-62.

    Article  Google Scholar 

  30. E. Takeuchi and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp. 493-509.

    Article  Google Scholar 

  31. J.E. Lait, J.K. Brimacombe and F. Weinberg: Ironmaking Steelmaking, 1974, vol. 1, pp. 90-7.

    Google Scholar 

  32. I. Jimbo and A.W. Cramb: Metall. Trans. B, 1993, vol. 24, pp. 5-10.

    Article  Google Scholar 

  33. M. Uehara, I.V. Samarasekera, and J.K. Brimacombe: Ironmaking Steelmaking, 1986, vol. 13, pp. 138-53.

    Google Scholar 

  34. C.H. Wu, C. Ji and M.Y. Zhu: Steel Res. Int., 2017, vol. 88, pp. 1600514.

    Article  Google Scholar 

  35. T. Nozaki, J. Matsuno, K. Murata, H. Ooi, K. Kodama, Tetsu-to-Hagane, 1976, vol. 62, pp. 1503-12.

    Article  Google Scholar 

  36. S. Koric and B.G. Thomas: J. Mater. Process. Technol., 2008, vol. 197, pp. 408-18.

    Article  Google Scholar 

  37. P.F. Kozlowski, B.G. Thomas, J.A. Azzi and H. Wang: Metall. Mater. Trans. A, 1992, vol. 23, pp. 903-18.

    Article  Google Scholar 

  38. C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 767-82.

    Article  Google Scholar 

Download references

Acknowledgments

The present work is financially supported by the National Key Research and Development Program of China (No. 2017YFB0304502), the National Natural Science Foundation of China (Nos. 51474058 and U1560208), the Program for Liaoning Excellent Talents in University (LJQ2015036) and the Fundamental Research Funds for the Central Universities of China (N172504024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Additional information

Manuscript submitted August 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Li, G., Wu, C. et al. Design and Application of CSC-Roll for Heavy Reduction of the Bloom Continuous Casting Process. Metall Mater Trans B 50, 110–122 (2019). https://doi.org/10.1007/s11663-018-1468-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1468-4

Keywords

Navigation