Skip to main content
Log in

Effect of Naturally Deposited Film on the Sub-rapid Solidification of Medium Manganese Steel by Using Droplet Solidification Technique

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the effect of naturally deposited film on the interfacial heat transfer during the sub-rapid solidification of medium manganese steel was studied by means of a droplet solidification technique. The heat transfer rates were calculated by the Inverse Heat Conduction Program (IHCP), through computing the responding temperatures’ gradient inside the cooling mold. The results showed that the contact angle between the mold and solidified droplet becomes lower (from 117.539 to 82.217 deg) with the repeat of the dropping tests, which means the wettability improves after the deposition of the natural film. Meanwhile the liquid time (the time from the start of ejection to the initiation of solidification) decreases from 1.76 to 1.28 seconds during the tests, suggesting that the steel keeps in the liquid state shorter. Therefore, the initiation of solidification is advanced, such that there would be less time for matching the scale of the shell and the mold. Consequently, the maximum heat flux increases from 2.90 to 6.35 MW/m2 with the deposition of the natural film, as the wettability is getting better leading to the reduction of the interfacial thermal resistance. However, the final maximum heat flux was decreasing to 4.98 MW/m2 due to the increased thickness of the film and corresponding interfacial thermal resistance. Moreover, it was found that the secondary dendrite arm spacing decreased from 10.84 to 5.01 μm at first, and then it increased to 8.11 μm with the variations of heat flux and cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. G. Q. Netto, R. P. Tavares, M. Isac, and R. I. L. Guthrie: ISIJ Int., 2001, vol. 41, pp. 1340-49.

    Article  Google Scholar 

  2. E. E. M. Luiten and K. Blok: Energy Policy, 2003, vol.31, pp. 1339-56.

    Article  Google Scholar 

  3. T. Loulou, E. A. Artyukhin and J. P. Bardon: Int. J. Heat Mass Tran., 1999, vol. 42, pp. 2129-42.

    Article  Google Scholar 

  4. K. Shibuya and M. Ozawa: ISIJ Int., 1991, vol.31, pp. 661-8.

    Article  Google Scholar 

  5. W. Zhang, Y. Yu, Y. Fang, and J. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 65-70.

    Article  Google Scholar 

  6. P. Nolli: Doctoral Thesis, Carnegie Mellon University, 2007.

  7. L. Strezov, J. Herbertson and G.R. Belton: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1023-30.

    Article  Google Scholar 

  8. L. Strezov, and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959-66.

    Article  Google Scholar 

  9. N. Phinichka: Doctoral Thesis, Carnegie Mellon University, 2001.

  10. H. Todoroki, R. Lertarom, A. W. Cramb, I. Jimbo and T. Suzuki: Electric Furnace Conference Proceedings, 1996.

  11. H. Todoroki, R. Lertarom, T. Suzuki and A. W. Cramb: Alex Mclean Symposium Proceedings, 1998.

  12. P. Nolli, and A. W. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 56-65.

    Article  Google Scholar 

  13. M. J. Ha, J. Choi, S. Jeong, H. Moon, S. Lee, and T. Kang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1487-97.

    Article  Google Scholar 

  14. Y. Yu, A. W. Cramb, R. Heard, Y. Fang and J. Cui: ISIJ Int., 2006, vol.46, pp. 1427-31.

    Article  Google Scholar 

  15. H. Zhang, W. Wang, D. Zhou, F. Ma, B. Lu, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1038-47.

    Article  Google Scholar 

  16. D. Zhou, W. Wang, H. Zhang, F. Ma, K. Chen, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1048-56.

    Article  Google Scholar 

  17. H. Zhang, and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 779-93.

    Article  Google Scholar 

  18. X. Luo, W. Wang and F. Ma: ISIJ Int., 2016, vol.56, pp. 1333-41.

    Article  Google Scholar 

  19. A. Karasangabo and C. Bernhard: Journal of Adhesion Science and Technology, 2012, vol. 26, pp. 1141-56.

    Google Scholar 

  20. Henrich V E: MRS Proceedings, 1994.

  21. P. Nolli, and A.W. Cramb: ISIJ Int., 2007, vol. 47, pp. 1284-93.

    Article  Google Scholar 

  22. T. Evans and L. Strezov: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1081-89.

    Article  Google Scholar 

  23. D. M. Stefanescu: Science and Engineering of Casting Solidification, Kluwer Academic/Plenum Publishers, New York 2002.

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51661130154, U1760202) and the Newton Advanced Fellowship (NA150320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted July 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, W., Zeng, J. et al. Effect of Naturally Deposited Film on the Sub-rapid Solidification of Medium Manganese Steel by Using Droplet Solidification Technique. Metall Mater Trans B 50, 77–85 (2019). https://doi.org/10.1007/s11663-018-1449-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1449-7

Keywords

Navigation