Skip to main content
Log in

Kinetic Modeling of the Silicothermic Reduction of Manganese Oxide from Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A model was developed to describe the mixed rate control kinetics in systems with MnO-SiO2-CaO-Al2O3 slags and Fe-Si metal droplets. During the reaction of Fe-Si droplets and slag, Mn2+ transport was found to be part of controlling the system but could not sufficiently describe all initial conditions (chiefly, changes to initial silicon content). The current model describes the kinetics of the stated system and offers answers to the question of rate control; the model has been fitted to nine datasets of varying initial conditions including initial [Si], initial (MnO), initial droplet size, and reaction temperature. The fitted mass transfer coefficients for metal and slag were 2.3 × 10−4 and 6.7 × 10−4 m/s, respectively; these values are constant across the nine datasets. Previous claims about the efficiency of silicon usage in reducing manganese have been modified; it appears that the formation of silica is favored throughout the reaction, but that the formation of a silicon monoxide gas layer on the metal surface dramatically impacts the rate of reaction. As a measure of overall fit of the model, the average of the root-mean-square errors for all datasets is 14 pct. Mass transport in slag is twice as influential on rate control as the metal phase. The simultaneous transport of both Mn2+ and silicate dimers controls mass transport in the slag. Both [Si] and [Mn] can control from the metal side but are dependent on the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted from Ref. [7]

Fig. 2
Fig. 3
Fig. 4

Reprinted from Ref. [7]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y.K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.

    Article  Google Scholar 

  2. G. Kim, S.K. Kim, S.C. Kang, and I.R. Sohn: CAMP-ISIJ, 2008, vol. 21, p. 593.

    Google Scholar 

  3. O.S. Bobkova and V.V. Barsegyan: Metallurgist, 2006, vol. 50, pp. 463–68.

    Article  Google Scholar 

  4. L.N. Kologrivova, A.Y. Nakonechnyi, Z.G. Trofimova, O.V. Nosochenko, and N.N. Kulik: Metallurgy, 1987, vol. 5, pp. 28–29.

    Google Scholar 

  5. O.I. Nokhrina, V.P. Komshukov, and V.I. Dmitrienko: Metallurgist, 2004, vol. 48, pp. 264–65.

    Article  Google Scholar 

  6. M. Eissa, H. El-Faramawy, and G. Farid: Steel Res., 1998, vol. 69, pp. 373–80.

    Article  Google Scholar 

  7. B.J. Jamieson and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1613–24.

    Article  Google Scholar 

  8. W.L. Daines and R.D. Pehlke: Trans. TMS-AIME, 1968, vol. 242, pp. 565–75.

    Google Scholar 

  9. E. Shibata, H. Sun, and K. Mori: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 279–86.

    Article  Google Scholar 

  10. H. Sohn, Z. Chen, and W. Jung: Steel Res., 2000, vol. 71, pp. 145–52.

    Article  Google Scholar 

  11. J.H. Heo, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1154–61.

    Article  Google Scholar 

  12. S.K. Tarby and W.O. Philbrook: Trans. TMS-AIME, 1967, vol. 239, pp. 1005–17.

    Google Scholar 

  13. R.J. Pomfret and P. Grieveson: Ironmak. Steelmak., 1978, vol. 5, pp. 191–97.

    Google Scholar 

  14. M. Ashizuka, A. Moribe, and K. Sawamura: Tetsu-to-Hagané, 1975, vol. 61, pp. 36–45.

    Article  Google Scholar 

  15. K. Xu, G. Jiang, W. Ding, L. Gu, S. Guo, and B. Zhao: ISIJ Int., 1993, vol. 33, pp. 104–08.

    Article  Google Scholar 

  16. H. Sun, M.Y. Lone, S. Ganguly, and O. Ostrovski: ISIJ Int., 2010, vol. 50, pp. 639–46.

    Article  Google Scholar 

  17. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: NIST Stand. Ref. Database 13, vol. 1, 1985.

  18. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, and M.A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  Google Scholar 

  19. Y.E. Lee and J.H. Downing: Can. Metall. Q., 1980, vol. 19, pp. 315–22.

    Article  Google Scholar 

  20. A. Gilat and V. Subramaniam: Numerical Methods for Engineers and Scientists: An Introduction with Applications Using MatLab, John Wiley & Sons, Inc., New York, NY, 2008.

    Google Scholar 

  21. NIST/SEMATECH: E-Handb. Stat. Meth., 2013, pp. 1–4.

  22. W. Ding and S.E. Olsen: ISIJ Int., 2000, vol. 40, pp. 850–56.

    Article  Google Scholar 

  23. E.T. Turkdogan, G.J.W. Kor, and R.J. Fruehan: Ironmak. Steelmak., 1980, vol. 7, pp. 268–80.

    Google Scholar 

  24. A. Wu, P.C. Hayes, and H.G. Lee: ISIJ Int., 1998, vol. 38, pp. 213–19.

    Article  Google Scholar 

  25. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, p. 3408.

    Article  Google Scholar 

  26. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1119–35.

    Article  Google Scholar 

  27. P.K. Iwamasa and R.J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 47–57.

    Article  Google Scholar 

  28. J. Lee, J.S. Oh, and J. Lee: JOM, 2016, vol. 68, pp. 2359–64.

    Article  Google Scholar 

  29. K. Narita, T. Makino, H. Matsumoto, A. Hikosaka, and J. Katsuda: ISIJ, 1983, vol. 69, pp. 1722–29.

    Google Scholar 

  30. P.V.V. Riboud and L.D.D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    Article  Google Scholar 

  31. E. Chen and K.S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–45.

    Article  Google Scholar 

  32. M.D. Dolan and R.F. Johnston: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 675–84.

    Article  Google Scholar 

  33. I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611–30.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science and Research Council of Canada (NSERC, Grant No. STPGP463252-14) for funding support. They also extend special thanks to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for their in-kind support, technical expertise, and many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Jamieson.

Additional information

Manuscript submitted August 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, B.J., Tabatabaei, Y., Barati, M. et al. Kinetic Modeling of the Silicothermic Reduction of Manganese Oxide from Slag. Metall Mater Trans B 50, 192–203 (2019). https://doi.org/10.1007/s11663-018-1437-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1437-y

Keywords

Navigation