Skip to main content
Log in

Rate of MgO Pickup in Alumina Inclusions in Aluminum-Killed Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work aims to clarify the rate and mechanism of MgO pickup by alumina inclusions and the effect of oxide impurities in MgO crucibles on this transformation. Two MgO crucibles from different batches from the same supplier were used in laboratory experiments with Al-killed steel. A kinetic model was developed, based on mass-transfer control in the liquid steel. Rate constants were fitted using inclusion analysis. The rate of magnesium transfer from the two types of crucibles was found to differ by a factor of 20; faster magnesium transfer was associated with formation of a slag layer on the inner surface of the crucible wall (rather than a solid spinel product layer). The kinetic model was also used to simulate industrial scale ladle refining (1) to illustrate the effects of total oxygen concentration and (2) to evaluate the contribution of steel-refractory reaction (in addition to steel-slag reaction) on the rate of MgO pickup in alumina inclusion. The rate of MgO pickup was higher with a lower inclusion concentration. For ladle desulfurization, the extent of MgO pickup in inclusions is directly linked to the extent of desulfurization; both reactions are controlled by the oxygen potential at the steel-slag interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. K. Schwerdtfeger: Arch. Eisenhüttenwes., 1983, vol. 54 (3), pp. 87–98.

    Article  Google Scholar 

  2. T. Zienert and O. Fabrichnaya: CALPHAD, 2013, vol. 40, pp. 1–9.

    Article  Google Scholar 

  3. K. Ahlborg: Steelmaking Conf. Proc., ISS-AIME, 2001, pp. 861–69.

  4. Z. Deng, M. Zhu, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3158–67.

    Article  Google Scholar 

  5. C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.

    Article  Google Scholar 

  6. J. Tan and B.A. Webler: AISTech 2016 Proc., Association for Iron & Steel Technology, Warrendale, 2016, pp. 2485–96.

    Google Scholar 

  7. G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40 (2), pp. 121–28.

    Article  Google Scholar 

  8. N. Verma, P.C. Pistorius, R.J. Fruehan, and M. Potter: Iron Steel Technol., 2010, vol. 7 (1), pp. 189–97.

    Google Scholar 

  9. S.P.T. Piva, D. Kumar, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 37–45.

    Article  Google Scholar 

  10. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E .Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: CALPHAD, 2016, vol. 54, pp. 35–53.

    Article  Google Scholar 

  11. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230–38.

    Article  Google Scholar 

  12. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1095–1104.

    Article  Google Scholar 

  13. D. Tang, M.E. Ferreira, and P.C. Pistorius: Microsc. Microanal., 2017, vol. 23, pp. 1082–90.

    Article  Google Scholar 

  14. C. Merlet: X-ray Optics and Microanalysis, 1992: Proc. 13th Int. Congr., Institute of Physics, Bristol, United Kingdom, 1993, pp. 123–26.

    Google Scholar 

  15. C. Merlet: Mikrochim. Acta, 1994, vols. 114–115, pp. 363–76.

    Article  Google Scholar 

  16. CRC Handbook of Chemistry and Physics, 99th ed., J.R. Rumble, ed., CRC Press, Boca Raton, FL, 2018.

  17. D. Kumar and P.C. Pistorius: AISTech 2016 Proc., Association for Iron & Steel Technology, Warrendale, PA, 2016, pp. 1151–59

    Google Scholar 

  18. A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569–77.

    Article  Google Scholar 

  19. D. Kumar, K.C. Ahlborg, and P.C. Pistorius: AISTech 2017 Proc., Association for Iron & Steel Technology, Warrendale, PA, 2017, pp. 2693–2706

    Google Scholar 

  20. M. Hino, S. Wang, T. Nagsaka, and S. Ban-ya: ISIJ Int., 1994, vol. 34, pp. 491–97.

    Article  Google Scholar 

  21. J.R. Lloyd and W.R. Moran: J. Heat Transfer, 1974, vol. 96, pp. 443–47.

    Article  Google Scholar 

  22. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell: Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, NY, 2001.

    Google Scholar 

  23. D. Kumar: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2018.

  24. M.-A. Van Ende, M. Guo, E. Zinngrebe, B. Blanpain, and I.-H. Jung: ISIJ Int., 2013, vol. 53, pp. 1974–82.

    Article  Google Scholar 

  25. H. Mu, T. Zhang, R.J. Fruehan, and B.A. Webler: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1665–74.

    Article  Google Scholar 

  26. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  27. C. Cicutti, C. Capurro, and C. Cerrutti: 9th Int. Conf. Exhib. on Clean Steel, Simulation and Model Calculations, Hungarian Mining and Metallurgical Society (OMBKE), Budapest, 2015.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Support of this work by the industrial members of the Center for Iron and Steelmaking Research is gratefully acknowledged. We also acknowledge use of the Materials Characterization Facility, Carnegie Mellon University, supported by Grant No. MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Manuscript submitted July 31, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Pistorius, P.C. Rate of MgO Pickup in Alumina Inclusions in Aluminum-Killed Steel. Metall Mater Trans B 50, 181–191 (2019). https://doi.org/10.1007/s11663-018-1436-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1436-z

Keywords

Navigation