Skip to main content
Log in

Mixing Behaviors in the Horizontal Bath Smelting Furnaces

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the copper smelting process, sulfides are oxidized by the injected oxygen in the liquid bath. The reaction rate is predominantly determined by the stirring conditions of the bath. Single lance mixing experiments were carried out in a horizontal cylindrical vessel with different gas blown angles to simulate the smelting furnaces gas blown from side and bottom. The mixing behaviors were studied by quantifying the mixing time of the bath under different conditions. The results show that the increase of gas flow rate decreases the mixing time rapidly before it reaches a plateau. In the side blown furnace, mixing time was also shortened significantly by increasing bath height up to certain values, followed by minor promotions of mixing time if further increasing the bath heights. In comparison to the side blown process with the same gas flow conditions, the bottom blown process took more time for the bath to reach homogeneity under the same operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( \rho_{l} \) :

Liquid density (kg/m3)

\( \rho_{g} \) :

Gas density (kg/m3)

\( u \) :

Gas velocity (m/s)

g :

Gravitational constant (m/s2)

L :

Liquid depth (m)

R :

Vessel radius (m)

Q :

Volumetric flow rate of gas (m3/s)

\( Fr^{\prime} \) :

Modified Froude Number

U:

Liquid recirculation velocity (m/s)

\( U_{p} \) :

Rising plume velocity (m/s)

\( P_{0} \) :

Atmospheric pressure (Pa)

n :

Mols of gas in one bubble (mol)

R :

GAS constant (J/mol/K)

T :

Temperature (K)

z :

Vertical distance gas traveled (m)

h :

Bath depth (cm)

λ :

Parameter for circulatory loop length

References

  1. M.E. Schlesinger, M.J. King, K.C. Sole and W.G. Davenport: Extractive metallurgy of copper, 4th ed., Elsevier Science Ltd. Kidlington, Oxford, 2002, pp. 112.

    Google Scholar 

  2. M. Perez-Tello, V.R. Parra-Sanchez, V.M. Sanchez-Corrales, A. Gomez-Alvarez, F. Brown-Bojorquez, R. Parra-Figueroa, E. R. Balladares-Varela and E.A. Araneda-Hernandez: Metall. Trans. B, 2018, vol. 49, pp.627-43.

    Article  Google Scholar 

  3. B. Zhao, Z. Cui, and Z. Wang: 4th Int. Symp. High-Temp. Metall. Process., 2013, pp. 1–10.

  4. D. Mazumdar and R.I. Guthrie: Metall. Trans. A, 1986, vol. 17, pp.725-33.

    Article  Google Scholar 

  5. A. Amaro-Villeda, M. Ramirez-Argaez. and A.N. Conejo: ISIJ Int, 2014, 54, 1-8.

    Article  Google Scholar 

  6. C.J. Su, J.M. Chou. and S.H. Liu: Mater. Trans, 2010, vol. 51, pp. 1602-8.

    Article  Google Scholar 

  7. G. Murthy, S. Mehrotra and A. Ghosh: Metall. Trans. B, 1988, vol. 19, pp. 839-50.

    Article  Google Scholar 

  8. O. Haida and J. Brimacombe: SCANINJECT III Proc, 1983, p. 5.

  9. S. Patil, D. Satish, M. Peranandhanathan and D. Mazumdar: ISIJ Int, 2010, vol. 50, pp. 1117-24.

    Article  Google Scholar 

  10. K. Nakanishi, T. Fujii and J. Szekely: Ironmak. Steelmak, 1975,vol. 3, pp. 190-5.

    Google Scholar 

  11. D. Mazumdar and R.I. Guthrie: ISIJ int, 1995, vol. 35, pp. 1-20.

    Article  Google Scholar 

  12. S. Asai, T. Okamoto, J. He and I. Muchi: Trans Iron Steel Inst. Jpn, 1983, vol. 23, pp. 43-50.

    Article  Google Scholar 

  13. L. Khajaviand and M. Barati: Metall. Trans. B, 2010, vol. 41, pp. 86-93.

    Google Scholar 

  14. J. Mandal, S. Patil, M. Madan and D. Mazumdar: Metall. Trans. B, 2005, vol. 36, pp. 479-87.

    Article  Google Scholar 

  15. G. Murthy, A. Ghoshand and S. Mehrotra: Metall. Trans. B, 1989, vol. 20, pp. 53-9.

    Article  Google Scholar 

  16. O. Haida and J. Brimacombe, Trans Iron Steel Inst. Jpn, 1985, vol. 25, pp. 14-20.

    Article  Google Scholar 

  17. L. Shui, Z. Cui, X. Ma, M. Akbar Rhamdhani, A. Nguyen, B. Zhao: Metall. Trans. B, 2015, 46, 1218-25.

    Article  Google Scholar 

  18. M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int, 1995, vol. 35, pp. 472-9.

    Article  Google Scholar 

  19. M. Iguchi, R. Tsujino, K. Nakamura and M. Sano: Metall. Trans. B, 1999, vol. 30, pp. 631-7.

    Article  Google Scholar 

  20. K. Krishnapisharody and G. Irons: Metall. Trans. B, 2006, vol. 37, pp. 763-72.

    Article  Google Scholar 

  21. M. Madan, D. Satish and D. Mazumdar: ISIJ international, 2005, vol. 45, pp. 677-85.

    Article  Google Scholar 

  22. S. Joo and R. Guthrie: Metall. Trans. B, 1992, vol. 23, pp. 765-78.

    Article  Google Scholar 

  23. Y. Sahai and R. Guthrie: Metall. Trans. B, 1982, vol. 13, pp. 193-202.

    Article  Google Scholar 

  24. T. Hsiao, T. Leher and B. Kjellberg: Scand. J. Metallurgy, 1980, vol. 9, pp.105-10

    Google Scholar 

  25. Y. Sahai: Metall. Trans. B, 1988, vol. 19(4), pp. 603-12.

    Article  Google Scholar 

  26. M. Castello-Branco and K. Schwerdtfeger: Metall. Trans. B, 1994, vol. 25, pp. 359-71.

    Article  Google Scholar 

  27. F. Oeters, H. Dromer and J. Kepura, SCANINJECT III, Proc. of int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1983.

  28. R.I.L. Guthrie: Iron and Steelmaker, 1982, vol. 9, pp. 41-5.

    Google Scholar 

  29. Y. Sahai and R.I.L. Guthrie: Metall. Trans. B, 1982, vol. 13, pp. 203-11.

    Article  Google Scholar 

  30. W.E. Forsythe: Smithsonian Physical Tables, 9th rev. ed., Knovel, New York City, NY, 2003, p. 319.

  31. J.P.T. Kapusta: JOM, 2017, vol. 69, pp. 970-79

    Article  Google Scholar 

  32. C. Cai, Y. Liang and Z. Qian: Chin. J. Process Eng, 1985, vol. 4, pp. 113–21.

    Google Scholar 

  33. G. Oryall and J. Brimacombe: Metall. Trans. B, 1976, vol. 7, pp. 391-403.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Copper Corporation of Chile (Codelco), Dongying Fangyuan Nonferrous Metals (Fangyuan), and Australia Research Council for the financial support through the ARC Linkage program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Chen.

Additional information

Manuscript submitted May 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Cui, Z., Chen, M. et al. Mixing Behaviors in the Horizontal Bath Smelting Furnaces. Metall Mater Trans B 50, 173–180 (2019). https://doi.org/10.1007/s11663-018-1433-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1433-2

Keywords

Navigation