Skip to main content
Log in

Influences of Quench Cooling Rate on Microstructure and Corrosion Resistance of Al-Cu-Mg Alloy Based on the End-Quenching Test

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To investigate the effects of the quench cooling rate on corrosion resistance of Al-Cu-Mg alloy, an end-quenching test was conducted and the microstructures at different cooling rates were observed by SEM and TEM. Additionally, the corrosion resistance was characterized by an intergranular corrosion test and electrochemical test. Moreover, the finite element method was applied to simulate the end quenching process. The results indicate that the actual end quenching process can be approximated as one-dimensional heat transfer, and the cooling rate varies at different cooling distances. By affecting the microstructures, decreasing the cooling rate leads to a decline in the corrosion properties. Low cooling rates coarsen the constituent particles and grain boundary particles, resulting in a wide precipitation-free zone and an increase in the intensity of corrosion reactions. A high cooling rate concentrates on the intragranular precipitant, which can reduce the pitting depth and represents a conversion from localized corrosion to general corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Warner. T: Mater. Sci. Forum, 2006, vol. 519, pp. 1271–78.

  2. T. Dursun, and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862–71.

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102-107.

    Article  Google Scholar 

  4. ASTM B209, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate, 2014.

  5. Kandpal. B. C, Chutani. A, Gulia. A, and Sadanna. C: International Journal of Advances in Engineering & Technology, 2011, vol. 1, pp. 65.

    Google Scholar 

  6. Cavazos. J. L, and Colás. R: Mater. Sci. Eng. A, 2003, vol. 363, pp. 171-178.

    Article  Google Scholar 

  7. Dolan G. P, Flynn. R. J, Tanner. D. A, and Robinson. J. S: Mater. Sci. Technol., 2005, vol. 21(6), pp. 687-692.

    Article  CAS  Google Scholar 

  8. Kavalco. P. M, Canale. L.C: J. ASTM Int., 2009, vol. 6, pp.1-20.

    Google Scholar 

  9. Dae-Hoon Ko, Dae-Cheol Ko, and Byung-Min Kim: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2072-2083.

    Article  Google Scholar 

  10. Shuhui Ma, Maniruzzaman, M. D. MacKenzie, D. S, and Sisson. R. D: Metall. Mater. Trans. B, 2007, vol. 38, pp. 583-589.

    Article  CAS  Google Scholar 

  11. Tiryakioğlu Murat, and Ralph T. Shuey: Metall. Mater. Trans. B, 2007, vol. 38, pp. 575-582.

    Google Scholar 

  12. Starink. M. J, Milkereit. B, Zhang. Y, and Rometsch. P. A: Materials & Design 2015, vol. 88, pp. 958-971.

    Article  CAS  Google Scholar 

  13. Dongfeng Li, Yin. B, Lei. Y, Liu. S, Deng. Y. L, and Zhang. X. M: Met. Mater. Int., 2016, vol. 22, pp. 222-228.

    Article  CAS  Google Scholar 

  14. Liu. S. D, Chen. B, Li. C. B, Dai. Y, Deng. Y. L, and Zhang. X. M: Corros. Sci., 2015, vol. 91, pp. 203-212.

    Article  CAS  Google Scholar 

  15. Tanner. D. A, and Robinson. J. S: J. Mater. Process. Technol., 2004, vol. 153, pp. 998-1004.

    Article  Google Scholar 

  16. O.K. Abubakre, U.P. Mamaki, R.A. Muriana: J. Miner. Mater. Charact. Eng., 2009, vol. 8, pp. 303–15.

  17. Chen. S. Y, Chen. K. H, Peng. G. S, Liang. X, and Chen. X. H: Transactions of Nonferrous Metals Society of China, 2012, vol. 22, pp. 47-52.

    Article  CAS  Google Scholar 

  18. Zhang. L, Feng. X, Li. Z, and Liu. C: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, vol. 227, pp. 954-964.

    Article  CAS  Google Scholar 

  19. Le Masson P, Loulou T, Artioukhine E, Rogeon P, Carron D, and Quemener J. J: Int. J. Therm. Sci., 2002, vol. 41, pp. 517-527.

    Article  CAS  Google Scholar 

  20. Li. Y. N, Zhang. Y. A, Li. X. W, Li. Z. H, Wang. G. J, Yan. H. W, Jin. L. B, Xiong. B. Q: Materials Science Forum, 2017, vol. 877, pp. 647-654.

    Article  Google Scholar 

  21. B. Liscic, H.M. Tensi, L.C. Canale, G.E. Totten: Quenching theory and technology, CRC Press, Boca Raton, 2010, pp. 606-655.

    Google Scholar 

  22. Su. J, and Hewitt. G. F: Numer. Heat Transfer, Part A, 2004, vol. 45, pp. 777-789.

    Article  Google Scholar 

  23. ASTM G110, Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminum Alloys by Immersion in Sodium Chloride + Hydrogen Peroxide Solution, 2015.

  24. A. E. Hughes, A. Boag, A. M. Glenn, D. McCulloch, T. H. Muster, C. Ryan, C. Luo, and X. Zhou: Corros. Sci., 2011, vol. 53, pp. 27-39.

    Article  CAS  Google Scholar 

  25. A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, and D. McCulloch: Corros. Sci., 2011, vol. 53, pp. 17-26.

    Article  CAS  Google Scholar 

  26. E. McCafferty: Corros. Sci., 2005, vol. 47, pp. 3202–15.

  27. Bergant. Z, Trdan. U, and Grum. J: Corros. Sci., 2014, vol. 88, pp. 372-386.

    Article  CAS  Google Scholar 

  28. Heakal. F. E. T, Tantawy. N. S, and Shehta. O. S: Mater. Chem. Phys., 2011, vol. 130, pp. 743-749.

    Article  Google Scholar 

  29. Zhang. X, Guo. M, Zhang. J, and Zhuang. L: Metall. Mater. Trans. B, 2016, vol. 47, pp. 608-620.

    Article  CAS  Google Scholar 

  30. Zhao. Y. L, Yang. Z. Q, Zhang. Z, Su. G. Y, and Ma. X. L: Acta Mater., 2013, vol. 61, pp. 1624-1638.

    Article  CAS  Google Scholar 

  31. Wang. S. C, and Starink. M. J: Int. Mater. Rev., 2005, vol. 50, pp. 193-215.

    Article  Google Scholar 

  32. Wang. S. C, Starink. M. J, and Gao. N: Scr. Mater., 2006, vol. 54, pp. 287-291.

    Article  CAS  Google Scholar 

  33. T. Ramgopal, P. I. Gouma, and G. S. Frankel: Corrosion, 2002, vol. 58, pp. 687-697.

    Article  CAS  Google Scholar 

  34. Hashimoto. T, Zhang. X, Zhou. X, Skeldon. P, Haigh. S. J, and Thompson. G. E: Corros. Sci., 2016, vol. 103, pp. 157-164.

    Article  CAS  Google Scholar 

  35. Birbilis. N, Cavanaugh. M. K, Kovarik. L, and Buchheit. R. G: Electrochem. Commun., 2008, vol. 10, pp. 32-37.

    Article  CAS  Google Scholar 

  36. Wang. J, Zhang. B, Wu. B, and Ma. X. L: Corros. Sci., 2016, vol. 105, pp. 183-189.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Defense Supporting Research Program (JPPT-125-GJGG-08-01), and the experimental material was provided by Southwest Aluminum Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingHui Luo.

Additional information

Manuscript submitted October 16, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Luo, B., Jing, H. et al. Influences of Quench Cooling Rate on Microstructure and Corrosion Resistance of Al-Cu-Mg Alloy Based on the End-Quenching Test. Metall Mater Trans B 49, 2241–2251 (2018). https://doi.org/10.1007/s11663-018-1329-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1329-1

Keywords

Navigation