Skip to main content

Advertisement

Log in

Formation Mechanism of Nanoscale Al3Fe Phase in Al-Fe Alloy During Semisolid Forming Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The formation mechanism of nanoscale Al3Fe phase in Al-1Fe (wt pct) alloy during rheo-extrusion was investigated, and the mechanical property of the prepared alloy was also measured. The results show that the average length of Al3Fe phase in Al-1Fe alloy prepared by rheo-extrusion is 300 nm, which is much more refined than the needlelike Al3Fe phase in as-cast Al-1Fe alloy (50 μm). In rheo-extrusion, Al3Fe phase formed by eutectic reaction is bonelike, but it could be continuously refined by the shear deformation in the wheel groove, in equal channel angular flow, and in expansion extrusion mold. The total equivalent strain of the shear deformation is higher than 4.82. The tensile strength and elongation of Al-1Fe alloy prepared by rheo-extrusion are 135 MPa and 30 pct, respectively. The tensile strength of Al-1Fe alloy prepared by rheo-extrusion is 58.8 pct higher than that of as-cast Al-1Fe alloy, and the elongation is 19 pct higher than that of as-cast Al-1Fe alloy. Compared with as-cast Al-1Fe alloy, the improvements of tensile strength and elongation caused by shear deformation in rheo-extrusion are higher than the reported improvements induced by rare earth modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.L. Sahoo and C.S. Sivaramakrishnan: Scripta Mater., 2003, vol. 99, pp. 253–57.

    Google Scholar 

  2. R.G. Guan, Y.F. Shen, Z.Y. Zhao, and X. Wang: J. Mater. Sci. Technol., 2016, vol. 33, pp. 215–23.

    Article  Google Scholar 

  3. Q.R. Zhao, Z. Qian, X.L. Cui, Y.Y. Wu, and X.F. Liu: J. Alloys Compd., 2015, vol. 650, pp. 768–76.

    Article  CAS  Google Scholar 

  4. P. Zhang, Z.M. Li, B.L. Liu, and W.J. Ding: J. Mater. Sci. Technol., 2017, vol. 33, pp. 367–78.

    Article  CAS  Google Scholar 

  5. P. Moldovan, G. Popescu, and F. Miculescu: J. Mater. Process. Technol., 2004, vol. 153, pp. 408–15.

    Article  Google Scholar 

  6. S.B. Sun, L.J. Zheng, J.H. Liu, and H. Zhang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 389–96.

    Article  Google Scholar 

  7. V.V. Tcherdyntsev, S.D. Kaloshkin, D.V. Gunderov, E.A. Afonina, I.G. Brodova, V.V. Stolyarov, Y.V. Baldokhin, E.V. Shelekhov, and I.A. Tomilin: Mater. Sci. Eng. A, 2004, vol. 375, pp. 888–93.

    Article  Google Scholar 

  8. J.M. Cubero-Sesin and Z. Horita: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5182–92.

    Article  Google Scholar 

  9. Z.M. Shi, K. Gao, Y.T. Shi, and Y. Wang: Mater. Sci. Eng. A, 2015, vol. 632, pp. 62–71.

    Article  CAS  Google Scholar 

  10. D. Holland-Moritz, J. Schroers, D.M. Herlach, B. Grushko, and K. Urban: Acta Mater., 1998, vol. 46, pp. 1601–15.

    Article  CAS  Google Scholar 

  11. C.Y. Ban, J.F. Zhang, P. Qian, X. Zhang, Y. Han, and J.Z. Cui: China Foundry, 2011, vol. 8, pp. 386–91.

    CAS  Google Scholar 

  12. S.D. Kaloshkin, V.V. Tcherdyntsev, I.A. Tomilin, D.V. Gunderov, V.V. Stolyarov, Y.V. Baldokhin, I.G. Brodova, and E.V. Shelekhov: Mater. Trans., 2002, vol. 43, pp. 2031–38.

    Article  CAS  Google Scholar 

  13. T. Dorin, N. Stanford, N. Birbilis, and R.K. Gupta: Corros. Sci., 2015, vol. 100, pp. 396–403.

    Article  CAS  Google Scholar 

  14. S.S. Nayak, B.S. Murty, and S.K. Pabi: J. Mater. Sci., 2008, vol. 31, pp. 449–54.

    CAS  Google Scholar 

  15. L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, and J.Z. Cui: J. Cryst. Growth, 2012, vol. 339, pp. 61–69.

    Article  CAS  Google Scholar 

  16. G.F. Mi, C.F. Dong, and D.W. Zhao: Front. Manuf. Des. Sci., 2011, vols. 44–47, pp. 2126–30.

    Google Scholar 

  17. Y. Zhang, Y.C. Liu, Y.J. Han, C. Wei, and Z.M. Gao: J. Alloys Compd., 2009, vol. 473, pp. 442–45.

    Article  CAS  Google Scholar 

  18. O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev, and J. Liu: Scripta Mater., 1998, vol. 38, pp. 1511–16.

    Article  CAS  Google Scholar 

  19. J. Hu, J. Teng, X. Ji, X. Kong, F. Jiang, and H. Zhang: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4769–75.

    Article  CAS  Google Scholar 

  20. V.V. Stolyarov, R. Lapovok, I.G. Brodova, and P.F. Thomson: Mater. Sci. Eng. A, 2003, vol. 357, pp. 159–67.

    Article  Google Scholar 

  21. Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra: Acta Mater., 2015, vol. 100, pp. 247–55.

    Article  CAS  Google Scholar 

  22. N. Su, R.G. Guan, X. Wang, Y.X. Wang, W.S. Jiang, and H.N. Liu: J. Alloys Compd., 2016, vol. 680, pp. 283–90.

    Article  CAS  Google Scholar 

  23. Y.X. Wang, R.G. Guan, D.W. Hou, Y. Zhang, W.S. Jiang, and H.N. Liu: J. Mater. Sci., 2017, vol. 52, pp. 1137–48.

    Article  CAS  Google Scholar 

  24. S. Miyazaki, A. Kawachi, S. Kumai, and A. Sato: Mater. Sci. Eng. A, 2005, vol. 400, pp. 294–99.

    Article  Google Scholar 

  25. W. Wei, W. Zhang, K.X. Wei, Y. Zhong, G. Cheng, and J. Hu: Mater. Sci. Eng. A, 2009, vol. 516, pp. 111–18.

    Article  Google Scholar 

  26. J.R. Cho and H.S. Jeong: J. Mater. Process. Technol., 2001, vol. 110, pp. 53–60.

    Article  Google Scholar 

  27. J. Lu, N. Saluja, A.L. Riviere, and Y. Zhou: J. Mater. Process. Technol., 1999, vol. 79, pp. 200–12.

    Article  Google Scholar 

  28. V.M. Segal: Mater. Sci. Eng. A, 1999, vol. 271, pp. 322–33.

    Article  Google Scholar 

  29. N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7537–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support of the National Natural Science Foundation of China under Grant Nos. 51474063 and 51674077 and the Fundamental Research Funds for the Central Universities under Grant No. N150204016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Guo Guan.

Additional information

Manuscript submitted August 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guan, RG. & Wang, Y. Formation Mechanism of Nanoscale Al3Fe Phase in Al-Fe Alloy During Semisolid Forming Process. Metall Mater Trans B 49, 2225–2231 (2018). https://doi.org/10.1007/s11663-018-1323-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1323-7

Keywords

Navigation