Skip to main content

Advertisement

Log in

An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2018

This article has been updated

Abstract

Large-scale deployment of MAX-phased Ti-Al-C with intriguing mechanical and physicochemical properties is significantly retarded by its harsh preparation conditions, in which costly precursors, high temperature and non-atmospheric pressure are generally imperative. We herein report an efficient electrolytic preparation of MAX-phased Ti-Al-C by direct electro-reduction of solid TiO2-Al2O3-C in molten CaCl2 at 1223 K under normal pressure. Homogeneous layered Ti3AlC2 with an oxygen content of 4300 ppm is prepared under a voltage of 3 V between the solid cathode and graphite anode for only 4 hours. The electro-reduction of TiO2-Al2O3-C exhibits a much faster speed compared with the electrolysis employing TiO2, TiO2-C and TiO2-Al2O3 as the precursors. Time-dependent electrolysis indicates that TiCxOy is the main intermediate. The generation of refractory and highly conducting TiCxOy intermediate enhances the reduction. Density functional theory simulations show a weak affinity towards oxygen of the resulting Ti3AlC2, which is beneficial to fast and thorough deoxidation. The formation of a layered structure of Ti3AlC2 is attributed to the template effect of the precursory graphite. By simply varying the precursory stoichiometry, layered Ti2AlC is also prepared. The present protocol featuring affordable feedstock, low temperature, ambient pressure, high energy efficiency and controllable stoichiometry is promising for large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 10 July 2018

    The section “Acknowledgments” was incorrect in the original article. The correct section “Acknowledgments” is given below.

References

  1. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman: Thin Solid Films, 2010, vol. 518, pp. 1851-1878.

    Article  CAS  Google Scholar 

  2. M. Radovic and M.W. Barsoum: Am. Ceram. Soc. Bull., 2013, vol. 92, pp. 20-27.

    CAS  Google Scholar 

  3. L. Peng: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1312-1314.

    Article  CAS  Google Scholar 

  4. E. Wu and E. Herold Kisi: J. Am. Ceram. Soc., 2006, vol. 89, pp. 710-713.

    Article  CAS  Google Scholar 

  5. D.J. Tallman, B. Anasori, and M.W. Barsoum: Mater. Res. Lett., 2013, vol. 1, pp. 115-125.

    Article  CAS  Google Scholar 

  6. N.V. Tzenov and M.W. Barsoum: J. Am. Ceram. Soc., 2000, vol. 83, pp. 825-832.

    Article  CAS  Google Scholar 

  7. M.W. Barsoum: Prog. Solid State Chem., 2000, vol. 28, pp. 201-281.

    Article  CAS  Google Scholar 

  8. M.W. Barsoum and M. Radovic: Ann. Rev. Mater. Res., 2011, vol. 41, pp. 195-227.

    Article  CAS  Google Scholar 

  9. X. Wang and Y. Zhou: Corros. Sci., 2003, vol. 45, pp. 891-907.

    Article  CAS  Google Scholar 

  10. W. Wang, V. Gauthier-Brunet, G. Bei, G. Laplanche, J. Bonneville, A. Joulain, and S. Dubois: Mater. Sci. Eng., A, 2011, vol. 530, pp. 168-173.

    Article  CAS  Google Scholar 

  11. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi: Science, 2013, vol. 341, pp. 1502-1505.

    Article  CAS  Google Scholar 

  12. P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, and X. Zhang: J. Power Sources 2015, vol. 284, pp. 38-43.

    Article  CAS  Google Scholar 

  13. M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, and X. Wang: Chem. Commun., 2015, vol. 51, pp. 13531-13533.

    Article  CAS  Google Scholar 

  14. B. Ding, J. Wang, Y. Wang, Z. Chang, G. Pang, H. Dou, and X. Zhang: Nanoscale, 2016, vol. 8, pp. 11136-11142.

    Article  CAS  Google Scholar 

  15. M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, and Y. Gogotsi: Angew. Chem. Int. Ed., 2014, vol. 53, pp. 4877-4880.

    Article  CAS  Google Scholar 

  16. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi: Adv. Mater., 2014, vol. 26, pp. 992-1005.

    Article  CAS  Google Scholar 

  17. M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, and Y. Gogotsi: Electrochem. Commun., 2012, vol. 16, pp. 61-64.

    Article  CAS  Google Scholar 

  18. Q. Tang, Z. Zhou, and P. Shen: J. Am. Chem. Soc., 2012, vol. 134, pp. 16909-16916.

    Article  CAS  Google Scholar 

  19. S.S. Li, X.L. Zou, Y. Hu, X.G. Lu, X.L. Xiong, Q. Xu, H.W. Cheng and Z.F. Zhou: J. Electrochem. Soc., 2018, vol. 165, pp. E97-E107.

    Article  CAS  Google Scholar 

  20. X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei: Nanoscale, 2014, vol. 6, pp. 11035-11040.

    Article  CAS  Google Scholar 

  21. M. Pietzka and J. Schuster: J. Phase Equilibria, 1994, vol. 15, pp. 392-400.

    Article  CAS  Google Scholar 

  22. O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P.Å. Persson, H. Högberg, S. Li, R. Ahuja, and O. Eriksson: J. Cryst. Growth, 2006, vol. 291, pp. 290-300.

    Article  CAS  Google Scholar 

  23. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-364.

    Article  CAS  Google Scholar 

  24. D. Wang, G. Qiu, X. Jin, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2006, vol. 45, pp. 2384-2388.

    Article  CAS  Google Scholar 

  25. K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, and G.Z. Chen: Angew. Chem. Int. Ed. Engl., 2006, vol. 45, pp. 428-32.

    Article  CAS  Google Scholar 

  26. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863-86.

    Article  CAS  Google Scholar 

  27. D.J. Fray and C. Schwandt: Mater. Trans., 2017, vol. 58, pp. 306-312.

    Article  CAS  Google Scholar 

  28. D.J. Fray: Faraday Discuss., 2016, vol. 190, pp. 11-34.

    Article  CAS  Google Scholar 

  29. A.B. Aybar and M. Anik: J. Energy Chem., 2017, vol. 26, pp. 719-723.

    Article  Google Scholar 

  30. J. Sure, D.S.M. Vishnu and C. Schwandt: Appl. Mater. Today, 2017, vol. 9, pp. 111-121.

    Article  Google Scholar 

  31. D.S.M. Vishnu, N. Sanil, K.S. Mohandas and K. Nagarajan: Acta Metall. Sin., 2017, vol. 30, pp. 218-227.

    Article  Google Scholar 

  32. H. Yin, W. Xiao, X. Mao, W. Wei, H. Zhu, and D. Wang: Electrochim. Acta, 2013, vol. 102, pp. 369-374.

    Article  CAS  Google Scholar 

  33. W. Xiao, J. Zhou, L. Yu, D. Wang and X. W. Lou: Angew. Chem. Int. Ed., 2016, vol. 55, pp. 7427-31.

    Article  CAS  Google Scholar 

  34. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 116, pp. 751-754.

    Article  Google Scholar 

  35. T. Nohira, K. Yasuda and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397-401.

    Article  CAS  Google Scholar 

  36. A.M. Abdelkader: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 33-42.

    Article  CAS  Google Scholar 

  37. W. Xiao and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215-3228.

    Article  CAS  Google Scholar 

  38. A.M. Abdelkader and D.J. Fray: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4481-4487.

    Article  CAS  Google Scholar 

  39. N.J. Lane, S.C. Vogel, E.A.N. Caspi, and M.W. Barsoum: J. Appl. Phys., 2013, vol. 113, p. 183519.

    Article  Google Scholar 

  40. X. Wang and Y. Zhou: J. Mater. Chem., 2002, vol. 12, pp. 455-460.

    Article  CAS  Google Scholar 

  41. Y. Zou, Z. Sun, H. Hashimoto, and S. Tada: Mater. Sci. Eng., A, 2008, vol. 473, pp. 90-95.

    Article  Google Scholar 

  42. I.I. Ivanova, A.N. Demidik, M.V. Karpets, N.A. Krylova, A.P. Polushko and S.A. Firstov: Powder Metall. Met. Ceram., 2014, vol. 53, pp. 377-385.

    Article  CAS  Google Scholar 

  43. D. Tang, W. Xiao, L. Tian, and D. Wang: J. Electrochem. Soc., 2013, vol. 160, pp. F1192-F1196.

    Article  CAS  Google Scholar 

  44. L. Zhang, S. Wang, S. Jiao, K. Huang and H. Zhu: Electrochim. Acta, 2012, vol. 75, pp. 357-359.

    Article  Google Scholar 

  45. S. Li, X. Zou, X. Lu, K. Zheng, G. Li, C. Chen, Q. Xu and Z. Zhou: J. Electrochem. Soc., 2017, vol. 164, pp. D533-D542.

    Article  CAS  Google Scholar 

  46. X. Yan and D. J. Fray: J. Appl. Electrochem., 2009, vol. 39, pp. 1349-1360.

    Article  CAS  Google Scholar 

  47. X. Yan: Metall. Mater. Trans. B, 2008, vol. 39, pp. 348-363.

    Article  CAS  Google Scholar 

  48. H. Kadowaki, Y. Katasho, K. Yasuda and T. Nohira: J. Electrochem. Soc., 2018, vol. 165, pp. D83-D89.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (51722404 and 51674177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiao or Dihua Wang.

Additional information

Manuscript submitted October 15, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Tang, D., Mao, X. et al. An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C. Metall Mater Trans B 49, 2770–2778 (2018). https://doi.org/10.1007/s11663-018-1304-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1304-x

Keywords

Navigation