Skip to main content
Log in

Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–1066.

    Article  CAS  Google Scholar 

  2. W-Y. Cha, D-S. Kim, Y-D. Lee, J-J. Park: ISIJ Int., 2000, vol. 44, pp. 1134-1139.

    Article  Google Scholar 

  3. J-H. Park, and H. Todoroki: ISIJ Int., 2010, vol. 48, pp. 1333–1346.

    Article  Google Scholar 

  4. M. Jiang, X. Wang, B. Chen and W. Wang: ISIJ Int., 2010, vol. 48, pp. 95–104.

    Article  Google Scholar 

  5. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401-1410.

    Article  CAS  Google Scholar 

  6. Y. Bi, A. V. Karasev and P. G. Jӧnsson: ISIJ Int., 2013, vol. 53, pp. 2099-2109.

    Article  CAS  Google Scholar 

  7. T. Yoshioka, K. Nakahata, T. Kawamura, Y. Ohba: ISIJ Int., 2016, vol. 56, pp. 1973-1981.

    Article  CAS  Google Scholar 

  8. E. Sunami, S. Nozaki, Y. Miura and T. Miura: Tetsu-to-Hagané, 1982, vol. 68, S248.

    Google Scholar 

  9. O. Suzuki, M. Ogchi, K. Nohara, T. Emi, Y. Mihara and Y. Katayama: Tetsu-to-Hagané, 1982, vol. 68, S249.

    Article  Google Scholar 

  10. R. Nakao, H. Tsuboi, E. Takeuchi, H. Morishige, M. Miyake: Tetsu-to-Hagané, 1987, vol. 73, S941.

    Google Scholar 

  11. T. Nishi and K. Shinme: Tetsu-to-Hagané, 1998, vol. 84, pp. 837-843.

    Article  Google Scholar 

  12. H. Matsuno and Y. Kikuchi: Tetsu-to-Hagané, 2002, vol. 88, pp. 48-50.

    Article  CAS  Google Scholar 

  13. Y. Ehara, S. Yokoyama, M. Kawakami: Tetsu-to-Hagané, 2007, vol. 93, pp. 475-482.

    Article  CAS  Google Scholar 

  14. Y. Ehara, S. Yokohama, M. Kawakami: Tetsu-to-Hagané, 2007, vol. 93, pp. 208-214.

    Article  CAS  Google Scholar 

  15. Y. Kang, B. Sahebkar, P R. Scheller, K. Morita and S. Du: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 522–534

    Article  Google Scholar 

  16. J.H. Park, S.B. Lee and H.R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–861

    Article  CAS  Google Scholar 

  17. C.W. Seo, S.H. Kim, S.K. Jo, M.O. Suk and S.M. Byun: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 790–797

    Article  CAS  Google Scholar 

  18. J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657–663

    Article  CAS  Google Scholar 

  19. J.H. Park: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 495–502

    Article  CAS  Google Scholar 

  20. S.K. Jo, B. Song and S.H. Kim: Metall. Mater. Trans. B, 2002, vol. 41B, pp. 703–709

    Article  Google Scholar 

  21. H. Itoh, M. Hino and S. Ban-ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–956

    Article  CAS  Google Scholar 

  22. G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40, pp. 121–128

    Article  CAS  Google Scholar 

  23. A Harada, G Miyano, N Maruoka, H Shibata, S KIitamura (2014) ISIJ Int. 54:2230–38

    Article  CAS  Google Scholar 

  24. V. Brabie: ISIJ Int., 1996, vol. 36, S109-S112

    Article  Google Scholar 

  25. C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–998

    Article  Google Scholar 

  26. C. Liu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 999–1009

    Article  Google Scholar 

  27. M. K. Haldar, H. S. Tripathi, S. K. Das and A. Ghosh: Ceramics Int., 2004, vol. 30, pp. 911-915

    Article  CAS  Google Scholar 

  28. A. Ikesue, K. Shimizu, K. Morikawa and J. Yoshitomi: J. Ceram. Soc. Jpn, (2003), vol. 111, pp. 407-412

    Article  CAS  Google Scholar 

  29. K. Goto: Resource Geology, 1997, vol. 47, pp. 223-229

    CAS  Google Scholar 

  30. Verein Deutscher Eisenhuttenleute: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, Germany, 1995, p. 44

    Google Scholar 

  31. M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, Japan, 2009.

    Google Scholar 

  32. M. Hino, K. Higuchi, T. Nagasaka and S. Ban-ya: Tetsu-to-Hanagé, 1994, vol. 80, pp. 501-506

    Article  Google Scholar 

  33. K. Morita, A. Inoue, N. Takayama and N. Sano: Tetsu-to-Hagané, 1988, vol. 74, pp. 999-1005

    Article  CAS  Google Scholar 

  34. K.T. Jacob and C. K. Behera: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1323-1332

    Article  CAS  Google Scholar 

  35. Sung-koo Jo, B. Song and S-H. Kim: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–709.

    Google Scholar 

  36. M. Kishi, R. Inoue, and H. Suito: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 859-67.

    Article  CAS  Google Scholar 

  37. Y. Nakamura and M. Uchimura: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 343-49.

    CAS  Google Scholar 

  38. The Japan Society for Promotion of Science, the 19th Committee on Steelmaking, Thermodynamic Data for Steelmaking, Gordon and Breach Science Publishers, 1988.

    Google Scholar 

  39. H. Itoh, M. Hino and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 623–628

    Article  CAS  Google Scholar 

  40. H. Ohta and H.Suito: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1131–1139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Xinhua Wang of the Shougang Corporation (previously at the University of Science and Technology, Beijing) for his kind support in the P-SEM analysis. The authors appreciate the Kurosaki-Harima Corporation for supplying the magnesia-chromite refractory rod. The authors gratefully acknowledge the financial support provided by the Iron & Steel Institute of Japan (ISIJ) research promotion Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Gao.

Additional information

Manuscript submitted September 26, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yagi, M., Gao, X. et al. Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel. Metall Mater Trans B 49, 2298–2307 (2018). https://doi.org/10.1007/s11663-018-1301-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1301-0

Keywords

Navigation