Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1995–2010 | Cite as

Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

  • Zhaoyang Li
  • Shibo Kuang
  • Aibing Yu
  • Jianjun Gao
  • Yuanhong Qi
  • Dingliu Yan
  • Yuntao Li
  • Xiaoming Mao


Oxygen blast furnace (OBF) ironmaking process has the potential to realize “zero carbon footprint” production, but suffers from the “thermal shortage” problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.



The authors are grateful to the Australian Research Council (ARC) (IH140100035), the Natural Science Foundation of China (NSFC) (U1560205), and the Baosteel Australia Research and Development Center (BAJC) (BA16002) for the financial support of this work; and to the National Computational Infrastructure (NCI) and Intersect Australia for the use of their high-performance computational facilities.


  1. 1.
    A. Orth, N. Anastasijevic and H. Eichberger, Miner. Eng. 2007, vol. 20, pp. 854–61.CrossRefGoogle Scholar
  2. 2.
    C. B. Xu and D. C. Cang, J. Iron Steel Res. Int. 2010, vol. 17, pp. 1-7.CrossRefGoogle Scholar
  3. 3.
    A.K. Biswas: Principles of blast furnace ironmaking: theory and practice, Cootha Publishing House, Brisbane, Australia, 1981.Google Scholar
  4. 4.
    A. I. Babich, H. W. Gudenau, K. T. Mavrommatis, C. Froehling, A. Formoso, A. Cores and L. Garcia, Revista De Metalurgia 2002, vol. 38, pp. 288-305.CrossRefGoogle Scholar
  5. 5.
    K. Takeda, T. Anyashiki, T. Sato, N. Oyama, S. Watakabe and M. Sato, Steel Res. Int. 2011, vol. 82, pp. 512-520.CrossRefGoogle Scholar
  6. 6.
    T. Ariyama and M. Sato, ISIJ Int. 2006, vol. 46, pp. 1736-1744.CrossRefGoogle Scholar
  7. 7.
    Y. Ujisawa, K. Nakano, Y. Matsukura, K. Sunahara, S. Komatsu and T. Yamamoto, ISIJ Int. 2005, vol. 45, pp. 1379-1385.CrossRefGoogle Scholar
  8. 8.
    T. Ariyama, R. Murai, J. Ishii and M. Sato, ISIJ Int. 2005, vol. 45, pp. 1371-1378.CrossRefGoogle Scholar
  9. 9.
    K. Takahashi, T. Nouchi, M. Sato and T. Ariyama, ISIJ Int. 2015, vol. 55, pp. 1866-1875.CrossRefGoogle Scholar
  10. 10.
    Y. Ohno, M. Matsuura, H. Mitsufuji and T. Furukawa, ISIJ Int. 1992, vol. 32, pp. 838-847.CrossRefGoogle Scholar
  11. 11.
    M. Qin, Z. Gao, Wang. G. and Y. Zhang, Ironmak. Steelmak. 1988, vol. 15, pp. 287-92.Google Scholar
  12. 12.
    H. Yamaoka and Y. Kamei, ISIJ Int. 1992, vol. 32, pp. 709-715.CrossRefGoogle Scholar
  13. 13.
    T. Miyashit, H. Nishio, T. Shimotsu, T. Yamada, M. Ohtsuki, Trans. Iron Steel Ins. Jpn., 1973, vol. 13, pp. 1-10.Google Scholar
  14. 14.
    Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang and M.K. Li, Iron and Steel 2011, vol. 46, pp. 6-8.Google Scholar
  15. 15.
    F. Fink, Steel Times 1996, vol. 36, pp. 398-99.Google Scholar
  16. 16.
    M. A. Tseitlin, S. E. Lazutkin and G. M. Styopin, ISIJ Int. 1994, vol. 34, pp. 570-573.CrossRefGoogle Scholar
  17. 17.
    M. S. Chu, H. Nogami and J. Yagi, ISIJ Int. 2004, vol. 44, pp. 2159-2167.CrossRefGoogle Scholar
  18. 18.
    W.K. Lu and R.V. Kumar, ISS Trans. 1984, vol. 5, pp. 25-31.Google Scholar
  19. 19.
    P. Jin, Z. Y. Jiang, C. Bao, Y. X. Lu, J. L. Zhang and X. X. Zhang, Steel Res. Int. 2016, vol. 87, pp. 320-329.CrossRefGoogle Scholar
  20. 20.
    Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo, JOM 2015, vol. 67, pp. 1936-1944.CrossRefGoogle Scholar
  21. 21.
    Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo, JOM 2015, vol. 67, pp. 1945-1955.CrossRefGoogle Scholar
  22. 22.
    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1998, vol. 38, pp. 239-245.CrossRefGoogle Scholar
  23. 23.
    J. van der Stel, G. Louwerse, D. Sert, A. Hirsch, N. Eklund and M. Pettersson, Ironmak. Steelmak. 2013, vol. 40, pp. 483-489.CrossRefGoogle Scholar
  24. 24.
    M.S. Chu, H. Nogami and J. Yagi, ISIJ Int. 2004, vol. 44, pp. 801-08.CrossRefGoogle Scholar
  25. 25.
    Z. Liu, M. Chu, T. Guo, H. Wang and X. Fu, Ironmak. Steelmak. 2016, vol. 43, pp. 64-73.CrossRefGoogle Scholar
  26. 26.
    H. Nogami, Y. Kashiwaya and D. Yamada, ISIJ Int. 2012, vol. 52, pp. 1523-1527.CrossRefGoogle Scholar
  27. 27.
    I. F. Kurunov, Metallurgist 2012, vol. 56, pp. 241-246.CrossRefGoogle Scholar
  28. 28.
    S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Miner. Eng. 2014, vol. 63, pp. 45-56.CrossRefGoogle Scholar
  29. 29.
    T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ Int. 2014, vol. 54, pp. 1457-1471.CrossRefGoogle Scholar
  30. 30.
    S. B. Kuang, Z. Y. Li and A.B. YU, Steel Res. Int. 2018, vol. 89, 170071: 1-25.CrossRefGoogle Scholar
  31. 31.
    S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama, ISIJ Int. 2010, vol. 50, pp. 914-923.CrossRefGoogle Scholar
  32. 32.
    J. Yagi, ISIJ Int. 1993, vol. 33, pp. 619-639.CrossRefGoogle Scholar
  33. 33.
    X. F. Dong, A. B. Yu, J. I. Yagi and P. Zulli, ISIJ Int. 2007, vol. 47, pp. 1553-1570.CrossRefGoogle Scholar
  34. 34.
    X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metall. Mater. Trans. B 2010, vol. 41, pp. 330-349.CrossRefGoogle Scholar
  35. 35.
    K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ Int. 2010, vol. 50, pp. 972-980.CrossRefGoogle Scholar
  36. 36.
    T. Inada, K. Takatani, K. Takata and T. Yamamoto, ISIJ Int. 2003, vol. 43, pp. 1143-1150.CrossRefGoogle Scholar
  37. 37.
    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1997, vol. 37, pp. 748-755.CrossRefGoogle Scholar
  38. 38.
    J. A. de Castro, A. J. da Silva, Y. Sasaki and J. Yagi, ISIJ Int. 2011, vol. 51, pp. 748-758.CrossRefGoogle Scholar
  39. 39.
    S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int. 2001, vol. 41, pp. 1112-1121.CrossRefGoogle Scholar
  40. 40.
    S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tuzun, ISIJ Int. 1998, vol. 38, pp. 1311-1319.CrossRefGoogle Scholar
  41. 41.
    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1997, vol. 37, pp. 458-467.CrossRefGoogle Scholar
  42. 42.
    S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikstrom, L. S. Okvist and J. O. Wikstrom, ISIJ Int. 2013, vol. 53, pp. 2065-2071.CrossRefGoogle Scholar
  43. 43.
    Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu, Metall. Mater. Trans. B 2017, vol. 48, pp. 602-618.CrossRefGoogle Scholar
  44. 44.
    H. T. Wang, M. S. Chu, T. L. Guo, W. Zhao, C. Feng, Z. G. Liu and J. Tang, Steel Res. Int. 2016, vol. 87, pp. 539-549.CrossRefGoogle Scholar
  45. 45.
    S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue and T. Ariyama, ISIJ Int. 2011, vol. 51, pp. 1410-1417.CrossRefGoogle Scholar
  46. 46.
    N. Standish and J. B. Drinkwat, Journal of Metals 1972, vol. 24, pp. 43-&.Google Scholar
  47. 47.
    H. Nishio and T. Miyashita, Tetso-to-Hagane 1973, vol. 59, pp. 1506-22.CrossRefGoogle Scholar
  48. 48.
    Y. Omori: Blast furnace phenomena and modelling Elsvier, London and New York 1987.Google Scholar
  49. 49.
    I. Muchi, Trans. Iron Steel Ins. Jpn. 1967, vol. 7, pp. 223-37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zhaoyang Li
    • 1
    • 2
  • Shibo Kuang
    • 2
  • Aibing Yu
    • 1
    • 2
  • Jianjun Gao
    • 3
  • Yuanhong Qi
    • 3
  • Dingliu Yan
    • 3
  • Yuntao Li
    • 4
  • Xiaoming Mao
    • 4
  1. 1.Center for Simulation and Modelling of Particulate SystemsSoutheast University - Monash University Joint Research InstituteSuzhouP.R. China
  2. 2.Department of Chemical Engineering, ARC Research Hub for Computational Particle TechnologyMonash UniversityMelbourneAustralia
  3. 3.State Key Laboratory for Advanced Iron and Steel Processes and ProductsCentral Iron and Steel Research InstituteBeijingP.R. China
  4. 4.Ironmaking Division Research Institute (R&D Center)Baoshan Iron & Steel Co., Ltd.ShanghaiP.R. China

Personalised recommendations