Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 902–911 | Cite as

Improving the Strength of the ZrC-SiC and TC4 Brazed Joint Through Fabricating Graded Double-Layered Composite Structure on TC4 Surface

  • J. M. Shi
  • L. X. Zhang
  • Q. Chang
  • Z. Sun
  • J. C. Feng
  • N. Ma
Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • 145 Downloads
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2017)

Abstract

In order to improve the ZrC-SiC ceramic and TC4 brazed joint property, graded double-layered SiC particles (SiCp)-reinforced TC4-based composite structure (named as GLS for convenience) was designed to relieve the residual stress in the joint. The GLS was successfully fabricated on TC4 substrate by double-layered laser deposition technology before the brazing process. The investigation of the GLS shows that the volume fraction of SiCp in the two composite layers was graded (20 and 39 vol pct, respectively). Ti5Si3 and TiC phases formed in the GLS due to the reaction of SiCp and TC4. The laser power-II (the laser power for the second deposition layer) affected the microstructure of the GLS significantly. Increasing the laser power-II would promote the reaction between the SiCp and TC4. But the high laser power-II made the layer I remelt completely and the two layers became homogeneous rather than graded structure. In the ZrC-SiC and TC4 brazed joint, the CTE (coefficient of thermal expansion) was graded from the TC4 to the ZrC-SiC due to the GLS, and the strength of the joint with the GLS (91 MPa) was higher than that without the GLS (43 MPa).

Notes

Acknowledgment

The authors are grateful to the financial support of the National Natural Science Foundation of China (Grant Nos. 51522404 and 51621091), the author Shi JM is grateful to the financial support of China Scholarships Council (No. 201606120128).

References

  1. 1.
    S.G. Chen, Y.Z. Gou, H. Wang, and J. Wang: J. Eur. Ceramic. Soc., 2016, vol. 36, pp. 3843–3850.CrossRefGoogle Scholar
  2. 2.
    Y.Y. Li, Q.G. Li, Z. Wang, C. Wu, G.P. Shi, and M.J. Liu: J. Asian Ceram. Soc., 2015, vol. 3, pp. 1–5.CrossRefGoogle Scholar
  3. 3.
    D. Pizon, L. Charpentier, R. Lucas, S. Foucaud, A. Maître, and M. Balat-Pichelin: Ceram. Int., 2014, vol. 40, pp. 5025–5031.CrossRefGoogle Scholar
  4. 4.
    G. Antou, M.D. Ohin, R. Lucas, G. Trolliard, W.J. Clegg, S. Foucaud, and A. Maître: Mater. Sci. Eng. A, 2015, vol. 643, pp. 1–11.CrossRefGoogle Scholar
  5. 5.
    J.M. Shi, J.C. Feng, X.Y. Tian, H. Liu, and L.X. Zhang: J. Eur. Ceramic. Soc., 2017, vol. 37, pp. 2769–2778.CrossRefGoogle Scholar
  6. 6.
    J.M. Shi, L.X. Zhang, X.Y. Pan, X.Y. Tian, and J.C. Feng: J. Eur. Ceramic. Soc., 2018, vol. 38, pp. 1237-1245.CrossRefGoogle Scholar
  7. 7.
    T.P. Wang, T. Ivas, W. Lee, C. Leinenbach, and J. Zhang: Ceram. Int., 2016, vol. 42, pp. 7080–7087.CrossRefGoogle Scholar
  8. 8.
    R. Pan, S. Kovacevic, T.S. Lin, P. He, D.P. Sekulic, S.D. Mesarovic, Z.H. Yang, Y.X. Shen, and H.M. Wei. Mater. Des., 2016, vol. 99, pp. 193–200.CrossRefGoogle Scholar
  9. 9.
    K. Pietrzak, D. Kaliński, and M. Chmielewski: J. Eur. Ceramic. Soc., 2007, vol. 27, pp. 1281-1286.CrossRefGoogle Scholar
  10. 10.
    J.Q. Li, X.R. Zeng, and J.N. Tang: J. Eur. Ceramic. Soc., 2003, vol. 23, pp. 1847 -1853.CrossRefGoogle Scholar
  11. 11.
    L.J. Huang, L. Geng, H.X. Peng, and B. Kaveendran: Mater. Sci. Eng. A, 2012, vol. 534, pp. 688–692.CrossRefGoogle Scholar
  12. 12.
    P.K. Qiu, H. Li, X.L. Sun, Y.F. Han, G.F. Huang, W.J. Lu, and D. Zhang: J. Alloy. Compd., 2017, vol. 699, pp. 874-881.CrossRefGoogle Scholar
  13. 13.
    B. Ya, B.W. Zhou, H.S. Yang, B.K. Huang, F. Jia, and X.G. Zhang: J. Alloy. Compd., 2015, vol. 637, pp. 456–460.CrossRefGoogle Scholar
  14. 14.
    X. Luo, Y.Q. Yang, Y.J. Yu, X.R. Wang, B. Huang, and Y. Chen: Mater. Sci. Eng. A, 2015, vol. 550.pp. 286–292.CrossRefGoogle Scholar
  15. 15.
    M. Das, V. K. Balla, T.S.S. Kumar, A. Bandyopadhyay, and I. Manna: Mater. Des., 2016, vol. 95, pp. 510–517.CrossRefGoogle Scholar
  16. 16.
    M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Scripta. Mater., 2010, vol. 63, pp. 438–441.CrossRefGoogle Scholar
  17. 17.
    S.G. Warrier, R.Y. Lin, and S.K. Wu: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 527-532.CrossRefGoogle Scholar
  18. 18.
    D.J. Liu, Y.B. Chen, L.Q. Li, and F.Q. Li: Scripta. Mater., 2008, vol. 59, pp. 91–94.CrossRefGoogle Scholar
  19. 19.
    BJ Kooi, YT Pei, J Th, M De Hosson (2003) Acta. Mater. 51:831–845.CrossRefGoogle Scholar
  20. 20.
    A.B. Kloosterman, B.J. Kooi, and J.Th.M. De Hosson: Acta. Mater. 1998, vol. 46, pp. 6205–6217.CrossRefGoogle Scholar
  21. 21.
    X. Zeng, T. Yamaguchi, K. Nishio: Opt. Laser Technol., 2016, vol. 80, pp. 84–91.CrossRefGoogle Scholar
  22. 22.
    YT Pei, V Ocelik, JTM De Hosson (2002) Acta. Mater. 50:2035–2051.CrossRefGoogle Scholar
  23. 23.
    L.Q. Li, D.J. Liu, Y.B. Chen, C.M. Wang, and F.Q. Li: Acta. Mater. 2009, vol. 57, pp. 3606–3614.CrossRefGoogle Scholar
  24. 24.
    X. Wang, L.F. Cheng, S.W. Fan, and L.T. Zhang: Mater. Des., 2012, vol. 36, pp. 499–504.CrossRefGoogle Scholar
  25. 25.
    S.G. Warrier, and R.Y. Lin: Metall. Mater. Trans. A, 1995, vol 26, pp. 1885-1894.CrossRefGoogle Scholar
  26. 26.
    F.Goesmann, and R. Schmid-Fetzer: Semicond. Sci. Technol., 1995, vol. 10, pp. 1652-1658.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • J. M. Shi
    • 1
  • L. X. Zhang
    • 1
  • Q. Chang
    • 1
  • Z. Sun
    • 1
  • J. C. Feng
    • 1
  • N. Ma
    • 2
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan

Personalised recommendations