Skip to main content

Advertisement

Log in

Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhan, L., Xu, Z., Environmental Science & Technology, 2008. Vol. 42, pp. 7676-7681.

    Article  Google Scholar 

  2. Kim, E. Y., Kim, M. S., Lee, J. C., Jeong, J., Pandey, B. D., Hydrometallurgy, 2011, Vol. 107, pp. 124-132.

    Article  Google Scholar 

  3. Andrews, D., Raychaudhuri, A., Frias, C. J Power Sources, 2000, Vol. 88, pp. 124-129.

    Article  Google Scholar 

  4. C.E.M. Meskers, C. Hagelüken, S. Salhofer, and M. Spitzbart: in Proceedings of EMC, 2009.

  5. Khaliq, A., Rhamdhani, M.A., Brooks, G. and Masood, S., Resources, 2014, 3(1), pp. 152-79.

    Article  Google Scholar 

  6. Birloaga, I., Coman, V., Kopacek, B., Vegliò, F., Waste Manage, 2014, Vol. 34, pp. 2581-2586.

    Article  Google Scholar 

  7. Yazici, E. Y., & Deveci, H. Hydrometallurgy, 2013, Vol. 139, pp. 30-38.

    Article  Google Scholar 

  8. Cui, J., Zhang, L., J Hazard Mater, 2008. Vol. 158, pp. 228-256.

    Article  Google Scholar 

  9. Sheng, P. P., & Etsell, T. H. Waste Manage Res, 2007. Vol. 25, pp. 380-383.

    Article  Google Scholar 

  10. Kamberovic, Z. J., Association of Metallurgical Engineers of Serbia, 2009, Vol. 15, pp. 231-243.

    Google Scholar 

  11. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. Minerals Engineering, 2012. Vol. 25, pp. 28-37.

    Article  Google Scholar 

  12. Yang, H., Liu, J., & Yang, J., Journal of Hazardous Materials, 2011. Vol. 187, pp. 393-400.

    Article  Google Scholar 

  13. Barakat, M. A., Hydrometallurgy. 1998., Vol. 49, pp. 63-73.

    Article  Google Scholar 

  14. Jha, M. K., Choubey, P. K., Jha, A. K., Kumari, A., Lee, J. C., Kumar, V., & Jeong, J., Waste Manage, 2012, Vol. 32, pp. 1919-1925.

    Article  Google Scholar 

  15. Svehla, G., Vogel’s Qualitative Inorganic Analysis, 7th ed., Pearson Education India, New Delhi, 2008.

    Google Scholar 

  16. N. Dhawan, M. Kumar, V. Kumar, and M. Wadhwa: in Proceedings of the Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS), Cancun, Mexico, 2008, pp. 12–15.

  17. Jha, M. K., Kumari, A., Choubey, P. K., Lee, J. C., Kumar, V., & Jeong, J., Hydrometallurgy, 2012, Vol. 121, pp. 28-34.

    Article  Google Scholar 

  18. Masavetas, I., Moutsatsou, A., Nikolaou, E., Spanou, S., Zoikis-Karathanasis, A., Pavlatou, E. A., & Spyrellis, N. Global NEST Journal, 2009, Vol. 11, pp. 241-247.

    Google Scholar 

  19. Park, Y. J., Fray, D. J., Journal of Hazardous Materials, 2009, Vol. 164, pp. 1152-1158.

    Article  Google Scholar 

  20. Gibson, R. W., Fray, D. J., Sunderland, J. G., Dalrymple, I. M., Electrochem. Soc. Proc., 2003. Vol. 18, pp. 346-354.

    Google Scholar 

  21. A.C. Tan: Tin and Solder Plating in the Semiconductor Industry. Springer Science & Business Media, 1992.

  22. J.-P. Croue, G.-V. Korshin, and M. Benjamin: Characterization of Natural Organic Matter in Drinking Water. AWWA Research Foundation and American Water Works Association, 1999.

  23. Zhang, X., Guan, J., Guo, Y., Yan, X., Yuan, H., Xu, J., Guo, Z. ACS Sustainable Chemistry & Engineering, 2015. Vol. 3, pp. 1696-1700.

    Article  Google Scholar 

  24. Levenspiel, O., Industrial & Engineering Chemistry Research, 1999. Vol. 38, pp.4140-4143.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. Y. Nosratzad for his help in performing some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Keshavarz Alamdari.

Additional information

Manuscript submitted June, 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavousi, M., Sattari, A., Alamdari, E.K. et al. Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards. Metall Mater Trans B 49, 1464–1470 (2018). https://doi.org/10.1007/s11663-018-1243-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1243-6

Keywords

Navigation