Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 894–901 | Cite as

A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1–x)N in Silicon Steel

  • Yan Luo
  • Lifeng Zhang
  • Ming Li
  • Seetharaman Sridhar
Topical Collection: Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2017)


A complex nitride of Al x Mg(1−x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10−7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.



The authors are grateful for the support from the National Science Foundation of China (Grant Nos. 51504020 and 51404019), the Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB, Beijing, China).


  1. 1.
    C.K. Hou, C.T. Hu, and S. Lee: IEEE Trans. Magn., 1991, vol. 27, pp. 4305–09.CrossRefGoogle Scholar
  2. 2.
    G. Lyudkovsky and P.K. Rastogi: IEEE T. Magn., 1985, vol. 21, pp. 1912–14.CrossRefGoogle Scholar
  3. 3.
    T. Nakayama and M. Takahashi: J. Mater. Sci., 1995, vol. 30, pp. 5979–84.CrossRefGoogle Scholar
  4. 4.
    T. Nakayama and T. Tanaka: J. Mater. Sci., 1997, vol. 32, pp. 1055–59.CrossRefGoogle Scholar
  5. 5.
    D.S. Petrovič, B. Arh, F. Tehovnik, and M. Pirnat: ISIJ Int., 2011, vol. 51, pp. 2069–75.CrossRefGoogle Scholar
  6. 6.
    F. Zhang, C. Ma, B. Wang, P. Zhang, Z. Ma, and Y. Zhang: Baosteel Technol. Res., 2011, vol. 5, pp. 41–45.Google Scholar
  7. 7.
    F. Zhang, L. Miao, Z. Zong, B. Wang, Y. Zhang, and Z. Ma: Baosteel Technol. Res., 2013, vol. 7, pp. 12–19.Google Scholar
  8. 8.
    H. Chunkan and L. Chunchih: ISIJ Int., 2008, vol. 48, pp. 531–39.CrossRefGoogle Scholar
  9. 9.
    Y. Ren, L. Zhang, and W. Fang: Metall. Res. Technol., 2017, vol. 114, p. 108.CrossRefGoogle Scholar
  10. 10.
    Y. Luo, L. Zhang, W. Yang, Y. Ren, and A.N. Conejo: Ironmaking Steelmaking, 2017, accepted for publication.Google Scholar
  11. 11.
    Y.W. Li, S.L. Jin, Y.B. Li, L. Zhao, and Z.Y. Li: Ceram. Int., 2009, vol. 35, pp. 2241–47.CrossRefGoogle Scholar
  12. 12.
    A.N. Zhukov, K.P. Burdina, and K.N. Semenenko: Russ. J. Gen. Chem., 1996, vol. 66, pp. 1046–50.Google Scholar
  13. 13.
    R.C. Hudd, A. Jones, and M.N. Kale: Tetsu-to-Hagané, 1971, vol. 209, pp. 121–25.Google Scholar
  14. 14.
    M. Hillert and S. Jonsson: Metall. Trans. A, 1992, vol. 23A, pp. 3141–49.CrossRefGoogle Scholar
  15. 15.
    L.S. Darken, R.P. Smith, and E.W. Filer: Am. Ins. Min. Metall. Eng., 1951, vol. 191, pp. 1174–79.Google Scholar
  16. 16.
    I. Shimose: J. Phys. Soc. Jpn., 1954, vol. 9, pp. 451–56.CrossRefGoogle Scholar
  17. 17.
    W.C. Leslie, R.L. Rickett, C.L. Dotson, and C.S. Walton: J. Am. Soc. Met., 1954, vol. 46, pp. 1470–99.Google Scholar
  18. 18.
    P. König, W. Scholz, and H. Ulmer: Steel Res. Int., 1961, vol. 32, pp. 541–56.Google Scholar
  19. 19.
    L.A. Erasmus: Tetsu-to-Hagané, 1964, vol. 202, pp. 32–41.Google Scholar
  20. 20.
    Y. Kagan and I.S. Lyubutin: Steelmaking Data Sourcebook, revised edition, Gordon and Breach Science Publishers, New York, NY, 1988.Google Scholar
  21. 21.
    T. Gladman and F.B. Pickering: Tetsu-to-Hagané, 1967, vol. 205, pp. 653–64.Google Scholar
  22. 22.
    M. Mayrhofer: BHM, 1975, vol. 120, pp. 312–21.Google Scholar
  23. 23.
    M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, Japan, 2010.Google Scholar
  24. 24.
    L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1907–16.CrossRefGoogle Scholar
  25. 25.
    W.Y. Kim, J.G. Kang, C.H. Park, J.B. Lee, and J.J. Pak: ISIJ Int., 2007, vol. 47, pp. 945–54.CrossRefGoogle Scholar
  26. 26.
    M.K. Pake, J.M. Jang, H.J. Kang, and J.J. Pak: ISIJ Int., 2013, vol. 53, pp. 535–37.CrossRefGoogle Scholar
  27. 27.
    F.L. de Alcântara, R.A.N.M. Barabosa, and M.A. da Cunha: ISIJ Int., 2013, vol. 53, pp. 1211–14.CrossRefGoogle Scholar
  28. 28.
    H. Sun, Y.C. Liu, and M.J. Lu: ISIJ Int., 2009, vol. 49, pp. 771–76.CrossRefGoogle Scholar
  29. 29.
    Y. Luo, A.N. Conejo, L. Zhang, L. Chen, and L. Cheng: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2348–2360.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yan Luo
    • 1
  • Lifeng Zhang
    • 1
  • Ming Li
    • 1
  • Seetharaman Sridhar
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.College of Applied Science and EngineeringColorado School of MinesGoldenUSA

Personalised recommendations