Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 1136–1148 | Cite as

Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting–Water Leaching

  • Guangshi Li
  • Hongwei Cheng
  • Sha Chen
  • Xionggang Lu
  • Qian Xu
  • Changyuan Lu


As a more environmentally friendly and energy-efficient route, the sulfation roasting–water leaching technique has been developed for highly effective extraction of non-ferrous metals from nickel sulfide concentrate in the presence of a Na2SO4 additive. The effects of several important roasting parameters—the roasting temperature, the addition of Na2SO4, the holding time, and the heating rate in particular—have been investigated. The results suggest that about 90 pct Ni, 92 pct Co, 95 pct Cu, and < 1 pct Fe can be leached from the calcine roasted under the optimum conditions. Furthermore, the behavior and mechanism of the Na2SO4 additive in the roasting process have been well addressed by detailed characterization of the roasted product and leaching residue using quantitative phase analysis (QPA) and energy dispersive spectroscopy (EDS) mapping. The Na2SO4 additive was observed to play a noticeable role in promoting the sulfation degree of valuable metals by forming liquid phases [Na2Me(SO4)2] at the outermost layer, which can create a suitable dynamic environment for sulfation. Thus, addition of Na2SO4 might be conducive to an alternative metallurgical process involving complex sulfide ores.



The authors wish to thank other colleagues in Shanghai University for their active supports and constructive comments. The funding for this work was provided by the National Basic Research Program of China (973 Program) Grant No. 2014CB643403.


  1. 1.
    P. Neou-Syngouna and D. Scordilis: Hydrometallurgy, 1990, vol. 25, pp. 367–74.CrossRefGoogle Scholar
  2. 2.
    K. A. Rao, R. Natarajan and N. P. H. Padmanabhan: Hydrometallurgy, 2001, vol. 62, pp. 115-24.CrossRefGoogle Scholar
  3. 3.
    C. R. Borra, J. Mermans, B. Blanpain, Y. Pontikes, K. Binnemans and T. V. Gerven: Miner. Eng., 2016, vol. 92, pp. 151-59.CrossRefGoogle Scholar
  4. 4.
    X. Guo, D. Li, K. H. Park, Q. Tian and Z. Wu: Hydrometallurgy, 2009, vol. 99, pp. 144-50.CrossRefGoogle Scholar
  5. 5.
    B. B. Kar and Y. V. Swamy: T. I. Min. Metall. C, 2013, vol. 110, pp. 73-78.Google Scholar
  6. 6.
    Y. V. Swamy, B. B. Kar and J. K. Mohanty: Hydrometallurgy, 2003, vol. 69, pp. 89-98.CrossRefGoogle Scholar
  7. 7.
    M. Wang and X. Wang: Hydrometallurgy, 2010, vol. 102, pp. 50-54.CrossRefGoogle Scholar
  8. 8.
    Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu and W. Peng: Int. J. Miner. Process, 2012, vol. 110-111, pp. 1-5.CrossRefGoogle Scholar
  9. 9.
    D. Yu, T. A. Utigard and M. Barati: Metall. Mater. Trans. B, 2014, vol. 45, pp. 653-61.CrossRefGoogle Scholar
  10. 10.
    T. Rosenqvist: Metall. Trans. B, 1978, vol. 9, pp. 337-51.CrossRefGoogle Scholar
  11. 11.
    M. Palperi and O. Aaltonen: JOM-US, 1971, vol. 23, pp. 34-38.CrossRefGoogle Scholar
  12. 12.
    T. Karwan, C. Malinowski, W. Ptak and M. Sukiennik: Thermochimi. Acta, 1978, vol. 23, pp. 269-82.CrossRefGoogle Scholar
  13. 13.
    V. Petkova and Y. Pelovski: J. Therm. Anal. Calorim., 2008, vol. 93, pp. 847-52.CrossRefGoogle Scholar
  14. 14.
    R. V. Siriwardane, J. A. P. Jra, E. P. Fisher, M. S. Shen and A. L. Miltz: Appl. Surf. Sci., 1999, vol. 152, pp. 219-36.CrossRefGoogle Scholar
  15. 15.
    H. Tagawa: Thermochimi. Acta, 1984, vol. 80, pp. 23-33.CrossRefGoogle Scholar
  16. 16.
    R. Zboril, M. Mashlan, V. Papaefthymiou and G. Hadjipanayis: J. Radioanal. Nucl. Ch., 2003, vol. 255, pp. 413-17.CrossRefGoogle Scholar
  17. 17.
    S. Prasad and B. D. Pandey: Can. Metall. Quart., 1999, vol. 38, pp. 237-47.Google Scholar
  18. 18.
    S. Prasad and B. D. Pandey: Miner. Eng., 1998, vol. 11, pp. 763-81.CrossRefGoogle Scholar
  19. 19.
    D. Yu, T. A. Utigard and M. Barati: Metall. Mater. Trans. B, 2014, vol. 45, pp. 662-74.CrossRefGoogle Scholar
  20. 20.
    H. S. Altundoǧan and F. Tümen: Hydrometallurgy, 1997, vol. 44, pp. 261-67.CrossRefGoogle Scholar
  21. 21.
    N. Jia, H. Wang, M. Zhang and M. Guo: Min. Proc. Ext. Met. Rev., 2016, vol. 37, pp. 418-26.CrossRefGoogle Scholar
  22. 22.
    J. Li, Z. Chen, B. Shen, Z. Xu and Y. Zhang: J. Clean. Prod., 2017, vol. 140, pp. 1148-55.CrossRefGoogle Scholar
  23. 23.
    Q. Li, J. Hu, Y. Yang, B. Xu and T. Jiang: Roasting, and Calcining of Minerals, 2015, Springer, Cham, pp. 59-70.CrossRefGoogle Scholar
  24. 24.
    Y. Li, H. Liu, B. Peng, X. Min, M. Hu, N. Peng, Y. Yuang and J. Lei: Hydrometallurgy, 2015, vol. 158, pp. 42-48.CrossRefGoogle Scholar
  25. 25.
    X. Liu, Y. Feng, H. Li, Z. Yang and Z. Cai: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 377-83.CrossRefGoogle Scholar
  26. 26.
    H. Shao, X. Shen, Y. Sun, Y. Liu and Y. Zhai, J. Min. Met. Mater., 2016, vol. 23, pp. 1133-40.CrossRefGoogle Scholar
  27. 27.
    F. Tümen and N. T. Bailey: Hydrometallurgy, 1990, vol. 25, pp. 317-28.CrossRefGoogle Scholar
  28. 28.
    S. Prasad, B.D. Pandey and S.K. Palit: T. I. Min. Metall. C, 1994, vol. 103, pp. C69-75.Google Scholar
  29. 29.
    S Prasad, B. D. Pandey and S. K. Palit: Metall. Mater. Trans. B, 1996, vol. 27, pp. 465-74.CrossRefGoogle Scholar
  30. 30.
    S. Prasad, B. D. Pandey and S. K. Palit: Mater. Trans. JIM, 1996, vol. 37, pp. 1304-10.CrossRefGoogle Scholar
  31. 31.
    S. Prasad and B. D. Pandey: Miner. Eng., 1998, vol. 11, pp. 763-81.CrossRefGoogle Scholar
  32. 32.
    S. Prasad, Can. Metall. Quart., 1999, vol. 38, pp. 237-47.Google Scholar
  33. 33.
    A.W. Fletcher and M. Shelef: Hydrometallurgy, 1964, vol. 24, pp. 946-70.Google Scholar
  34. 34.
    T. R. Ingraham and R. Kerby: Can. Metall. Quart., 1967, vol. 6, pp. 89-119.CrossRefGoogle Scholar
  35. 35.
    K. L. Luthra: J. Electrochem. Soc., 1980, vol. 127, pp. 2202-10.CrossRefGoogle Scholar
  36. 36.
    K. L. Luthra: Metall. Mater. Trans. A, 1982, vol. 13, pp. 1647-54.CrossRefGoogle Scholar
  37. 37.
    G. Li, H. Cheng, C. Xu, C. Lu, X. Lu, X. Zou and Q. Xu (2016) Characterization of Minerals, Metals, and Materials, Springer: Cham, pp. 65-74.Google Scholar
  38. 38.
    R. W. Cheary and A. Coelho: J. Appl. Crystallogr., 1992, vol. 25, pp. 109-21.CrossRefGoogle Scholar
  39. 39.
    C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. D. Pelton and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.CrossRefGoogle Scholar
  40. 40.
    G. Oyama, O. Pecher, K. J. Griffith, S. Nishimura, R. Pigliapochi, C. P. Grey and A. Yamada: Chem. Mater., 2016, vol. 28, pp. 5321-28.CrossRefGoogle Scholar
  41. 41.
    A. M. Fry, O. T. Sweeney, W. A. Phelan, N. Drichko, M. A. Siegler and T. M. McQueen: J. Solid State Chem., 2015, vol. 222, pp. 129-35.CrossRefGoogle Scholar
  42. 42.
    P. Barpanda, G. Oyama, S. Nishimura, S. C. Chung and A. Yamada: Nat. Commun., 2014, vol. 5, pp. 43-58.CrossRefGoogle Scholar
  43. 43.
    A.K. Misra, D.P. Whittle, and W.L. Worrell: Report No. LBL-11495J, Electrochem. Soc., 1980.Google Scholar
  44. 44.
    G. Li, H. Cheng, X. Xiong, X. Lu, C. Xu, C. Lu, X. Zou and Q. Xu: Sci. Rep.-UK., 2017, vol. 7, pp. 1-11.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Special Steel & School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations