Skip to main content
Log in

Multiphase Model of Semisolid Slurry Generation and Isothermal Holding During Cooling Slope Rheoprocessing of A356 Al Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient

D :

Diameter, m

f s,max :

Maximum solids fraction

g:

Gravity acceleration, m s−2

K:

Momentum exchange coefficient, kg m−3 s−1

U :

Momentum exchange, kg m−2s−2

Pr:

Prandlt number

P:

Pressure, Pa

Re:

Reynolds number

T:

Temperature, K

Ts :

Solidus temperature of alloy, K

Tm :

Melting temperature of pure Al, K

ρ :

Density, kg m−3

μ :

Viscosity, kg m−1 s−1

\( {\vec{\mathbf{u}}} \) :

Velocity vector, m s−1

D :

Diffusion coefficient, m2 s−1

N :

Grain production rate, m−3 s−1

C :

Species exchange rate, kg m−3 s−1

C mix :

Mixture concentration

t:

Time, s

σ unt :

Surface tension of untreated melt

c p :

Specific heat, J kg−1 K−1

Φ:

Fraction of liquid

f :

Volume fraction

h :

Enthalpy, KJ kg−1

k :

Thermal conductivity, W m−1 K−1

H :

Heat-transfer coefficient, W m−2 K−1

L :

Latent heat, KJ/kg

Q :

Energy exchange by heat transfer, J m−3 s−1

Nu :

Nusselt number

k P :

Partition coefficient

Tl :

Liquidus temperature of alloy, K

TK :

Temperature at point K, K

TG :

Temperature at point G, K

\( \bar{\bar{\tau }} \) :

Stress tensors, kg m−1 s−2

\( {\vec{\mathbf{u}}}^{*} \) :

Interface velocity, m/s

M :

Mass-transfer rate, kg s−1 m−3

n :

Grain density, m−3

c*:

Interface species concentration

Δt :

Time step, s

ν :

Grain growth rate

\( \sigma_{\bmod } \) :

Surface tension of modified melt

d :

Stands for drag-related part

p :

Stands for phase-transfer-related part

l, s, a :

Stands for liquid metal, solid α-Al grain and air

References

  1. C. Beckermann and J. Ni: Int. Comm. Heat Mass Transfer, 1996, vol. 23, pp. 315-324.

    Article  Google Scholar 

  2. C. Beckermann and C.Y. Wang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754-2764.

    Google Scholar 

  3. C. Beckermann and C.Y. Wang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2765-2783.

    Google Scholar 

  4. M. Wu, A. Ludwig, A. Buhring-Polaczek, M. Fehlbier, and P.R. Sahm: International journal of heat and mass transfer, 2003, vol. 46, pp. 2819-2832.

    Article  Google Scholar 

  5. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613-1631.

    Article  Google Scholar 

  6. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1465-1475.

    Article  Google Scholar 

  7. M. Wu and A. Ludwig: Acta Materialia, 2010, vol. 57, pp. 5621-5631.

    Article  Google Scholar 

  8. M. Wu and A. Ludwig: Acta Materialia, 2010, vol. 57, pp. 5632-5644.

    Article  Google Scholar 

  9. P.R. Chakraborty and P. Dutta: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1075-1079.

    Article  Google Scholar 

  10. T. Wang, B. Pustal, M. Abondano, T. Grimming, A. Buhring-Polaczek, M. Wu, and A. Ludwig: Trans. Nonferrous Met. Soc. China, 2005, vol. 15(2), pp. 389-394.

    Google Scholar 

  11. N. K. Kund, P. Dutta: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. s50-s54.

    Article  Google Scholar 

  12. P. Das, S.K. Samanta, H. Chattopadhyay, B.B. Sharma, and P. Dutta: Material Science and Technology, 2013, vol. 29, pp. 83-92.

    Article  Google Scholar 

  13. P. Das, S.K. Samanta, H. Chattopadhyay, and P. Dutta: Acta Metallurgica Sinica (English Letters), 2012, vol. 25, pp. 329-339.

    Google Scholar 

  14. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93-123.

    Article  Google Scholar 

  15. P. Das, S.K. Samanta, and P. Dutta: Metall. Mater. Trans. B, 2015, vol. 46B, 1302-1313.

    Article  Google Scholar 

  16. A. Ludwig and M. Wu: : Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673-3683.

    Article  Google Scholar 

  17. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, New York, NY, 1960.

    Google Scholar 

  18. T. Wang, M. Wu, A. Ludwig, M. Abondano, B. Pustal, and A. Buhring-Polaczek: International Journal of Cast metals research, 2005, vol. 18(4), pp. 221-228.

    Article  Google Scholar 

  19. L. Schiller and Z. Naumann: Z. Ver. Deutsch. Ing., 1935, vol. 77, pp 318.

    Google Scholar 

  20. D.J. Gun, Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 467–476.

    Article  Google Scholar 

  21. W.E. Ranz, W.R. Marshal: Chem. Eng. Prog., 1952, vol. 48 (3), pp. 141–146.

    Google Scholar 

  22. S.K. Samanta, H. Chattopadhyay, B. Pustal, R. Berger, M.M. Godkhindi, and A. Buhrig-Polaczek: International Journal of Heat and Mass Transfer, 2008, vol. 51(3), pp. 672-682.

    Article  Google Scholar 

  23. R. Canyook, S. Petsut, S. Wisutmethangoon, M. C. Flemings, J. Wannasin: Trans Nonferrous Met Soc China, 2010, vol. 20, pp. 1649-1655.

    Article  Google Scholar 

  24. R. Canyook, J. Wannasin, S. Wisutmethangoon, and M. C. Flemings: Acta Mater., 2012, vol. 60, pp. 3501–3510.

    Article  Google Scholar 

  25. P. Das, S. K. Samanta, B.R.K. Venkatpathi, H. Chattopadhyay, and P. Dutta: Trans. Indian Inst. Met., 2012, vol. 65, pp. 669-672.

    Article  Google Scholar 

  26. D. Brabazon, D.J. Browne, and A.J. Carr: Mater. Sci. Eng. A, 2003, vol. 356, pp. 69–80.

    Article  Google Scholar 

  27. A. Blanco, Z. Azpilgain, J. Lozares, P. Kapranos, and I. Hurtado: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1638–1642.

    Article  Google Scholar 

  28. E. Tzimas, A. Zavaliangos: Materials Science and Engineering A, 2000, vol. 289, pp. 228–240.

    Article  Google Scholar 

  29. H.V. Atkinson and D. Liu: Materials Science and Engineering A, 2008, vol. 496, pp. 439–446.

    Article  Google Scholar 

  30. E.J. Zoqui, M. Paes, M.H. Robert: Journal of Materials Processing Technology, 2004, vol. 153-154, pp. 300-306.

    Article  Google Scholar 

  31. [31] H.M. Guo, X. Q. Luo, A.S. Zhang, and X. J. Yang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1361-1366.

    Article  Google Scholar 

  32. [32] J. Koke, M. Modigell: Journal of Non-Newtonian Fluid Mech., 2003, vol. 112, pp. 141-160.

    Article  Google Scholar 

  33. [33] M. Modigell, J. Koke, Mechanics of Time-Dependent Materials, 1999, vol. 3, pp. 15–30.

    Article  Google Scholar 

  34. [34] M. Modigell, J. Koke: Journal of Materials Processing Technology, 2001, vol. 111, pp 53-58.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DST, New Delhi and CSIR-CMERI for their financial support to this study and all the members of NNMT group for their cooperation and cordial help toward successful completion of this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Dutta.

Additional information

Manuscript submitted May 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Samanta, S.K., Mondal, B. et al. Multiphase Model of Semisolid Slurry Generation and Isothermal Holding During Cooling Slope Rheoprocessing of A356 Al Alloy. Metall Mater Trans B 49, 1925–1944 (2018). https://doi.org/10.1007/s11663-018-1211-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1211-1

Keywords

Navigation