Skip to main content
Log in

Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.J. Wang, B.H. Li, Z.Y. Zhu, Y. Liu, Y.L. Wang and C.Y. Guan: Journal of Iron and Steel Research, 2012, vol. 24, pp. 21-26.

    Google Scholar 

  2. A. Grill, J.K. Brimacombe and F. Weinberg: Ironmaking Steelmaking, 1976, vol. 3, pp. 38-47.

    Google Scholar 

  3. K. Sorimachi and J.K. Brimacombe: Ironmaking Steelmaking, 1977, vol. 4, pp. 240-245.

    Google Scholar 

  4. K. Kim, H.N. Han, T. Yeo, Y. Lee, K.H. Oh and D.N. Lee: Ironmaking and Steelmaking, 1997, vol. 24, pp. 249-256.

    Google Scholar 

  5. J.E. Lee, T.J. Yeo, K.H. OH, J.K. Yoon and U.S. Yoon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 225-237.

    Article  Google Scholar 

  6. C.S. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151-1172.

    Article  Google Scholar 

  7. J. Svensson, P.ER. López, P.N Jalali, and M. Cervantes: In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, p. 012097.

  8. H. Mizukami, K. Kawakami, T. Kitagawa, M. Suzuki, S. Uchida and Y. Komatsu: Tetsu-to-Hagané, 1986, vol. 72, pp. 1862-1869.

    Article  Google Scholar 

  9. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida and Y. Komatsu: Isij Int, 1991, vol. 31, pp. 254-261.

    Article  Google Scholar 

  10. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 707-725.

    Article  Google Scholar 

  11. X. Meng and M. Zhu: Ironmaking and Steelmaking, 2009, vol. 36, pp. 300-310.

    Article  Google Scholar 

  12. S. Lei, S. Zeng, Z.W. Han, J.W. Yan, K. Feng and S.P. Qing: Continuous Casting, 2013, 380, pp. 5-11.

    Google Scholar 

  13. D.J. Zhang, S. Lei, S. Zeng and H.F. Shen: Isij Int, 2014, vol. 54, pp. 336-341.

    Article  Google Scholar 

  14. H. Zhang, C.Z. Yang, M.L. Wang, H.B. Tao, H.P. Liu and X.B. Wang: Journal of Iron and Steel Research, International, 2015, vol. 22, pp. 99-105.

    Article  Google Scholar 

  15. P. Hu, H. Zhang, M.L. Wang, M.Y. Zhu, X.Z. Zhang, Y.Y. Zhang and Z.Y. Zhang: Metallurgical Research & Technology, 2015, vol. 112, pp. 104.

    Article  Google Scholar 

  16. D.F. Chen, X. Xie, M.J. Long, M. Zhang, L.L. Zhang and Q. Liao: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 392-398.

    Article  Google Scholar 

  17. X. Xie, D.F. Chen, H.J. Long, M.J. Long and K. Lv: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2442-2452..

    Article  Google Scholar 

  18. S.F. Yang, L.F. Zhang L, J.S. Li and K. PEASLEE: Isij int, 2009, vol. 49, pp 1551-1560.

    Article  Google Scholar 

  19. R. Chaudhary, G.G. Lee, B.G. Thomas and S.H. Kim: Metall. and Mater. Trans. B, 2008, vol. 39B, pp. 870-884.

    Article  Google Scholar 

  20. X.D. Liu, M.Y. Zhu and N.L. Cheng: Acta Metallurgica Sinica-Chinese Edition, 2006, vol. 42, pp. 1081-1086.

    Google Scholar 

  21. X.D. Lu: Master’s Thesis, Jiangsu University of Science and Technology, Zhenjiang, 2012.

  22. A.N. Bastida, R.D. Morales, S G. Hernandez, E.T. Alonso and A.E. Zarate: Isij Int, 2010, vol. 50, pp. 830-838.

    Article  Google Scholar 

  23. E Friedman: Journal of Pressure Vessel Technology, 1975, vol. 97, pp. 206-213.

    Article  Google Scholar 

  24. T.C. Tszeng and S. Kobayashi: International Journal of Machine Tools and Manufacture, 1989, vol. 29, pp. 121-140.

    Article  Google Scholar 

  25. M. Uehara: Master’s Thesis, University of British Columbia, Vancouver, 1986.

  26. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685-705.

    Article  Google Scholar 

  27. W. Luo, B. Yan, Y.X. Xiong, G.H. Wen and H.L. Xu: Materials Science and Technology, 2012, vol. 20, pp. 31-37.

    Google Scholar 

  28. L.C. Hibbeler, S. Koric, K. Xu, B.G. Thomas, and C. Spangler: Iron & steel technology, 2009, vol. 6, p. 60.

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Natural Science Foundation of China (NSFC), Project Nos. 51374260, 51504048 and 51611130062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mujun Long or Dengfu Chen.

Additional information

Manuscript submitted July 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Long, M., Chen, H. et al. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures. Metall Mater Trans B 49, 866–876 (2018). https://doi.org/10.1007/s11663-018-1210-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1210-2

Keywords

Navigation