Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 1471–1481 | Cite as

Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting–Leaching

  • Jing Wen
  • Tao Jiang
  • Yingzhe Xu
  • Jiayi Liu
  • Xiangxin Xue


Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting–leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.



This research was financially supported by the Programs of the National Natural Science Foundation of China (Nos. 51574082 and 51374052), the National Basic Research Program of China (973 Program) (No. 2013CB632603), the Fundamental Funds for the central universities (Nos. 150202001), and the National Natural Science Foundation of China and Yunnan Provincial Government (No. U15022273).


  1. 1.
    R. R. Moskalyk and A. M. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 793–805.CrossRefGoogle Scholar
  2. 2.
    P. C. Hu, Y. M. Zhang, T. Liu, J. Huang, Y. Z. Yuan and Y. D. Yang: Sep. Purif. Technol., 2017, vol. 180, pp. 99–106.CrossRefGoogle Scholar
  3. 3.
    S. A. Katz and H. Salem: J. Appl. Toxicol., 1993, vol. 13 (3), pp. 217–24.CrossRefGoogle Scholar
  4. 4.
    S. M. J. Mirazimi, F. Rashchi and M. Saba: Sep. Purif. Technol., 2013, vol. 116, pp. 175–83.CrossRefGoogle Scholar
  5. 5.
    P. Miretzky and A. F. Cirelli: J. Hazard. Mater., 2010, vol. 180, pp. 1–19.CrossRefGoogle Scholar
  6. 6.
    B. Dhal, H. N. Thatoi, N. N. Das and B. D. Pandey: J. Hazard. Mater., 2013, vol. 250–251, pp. 272–91.CrossRefGoogle Scholar
  7. 7.
    J. H. Zhang, W. Zhang, L. Zhang and S. Q. Gu: Int. J. Miner. Process., 2015, vol. 138, pp. 20–29.CrossRefGoogle Scholar
  8. 8.
    X. S. Li, B. Xie, G. E. Wang and X. J. Li: Trans. Nonferrous Met. Soc. China., 2011, vol. 21, pp. 1860–67.CrossRefGoogle Scholar
  9. 9.
    H. G. Wang, M. Y. Wang and X. W. Wang: Miner. Process. Extr. Metall. Rev., 2015, vol. 124 (3), pp. 127–31.CrossRefGoogle Scholar
  10. 10.
    K. Yang, X. Zhang, X. Tian, Y. Yang and Y. Chen: Hydrometallurgy. 2010, vol. 103 (1–4), pp. 7–11.CrossRefGoogle Scholar
  11. 11.
    P. Sun, K. Huang and H. Z. Liu: Hydrometallurgy. 2016, vol. 165, pp. 370–80.CrossRefGoogle Scholar
  12. 12.
    D. D. Jiang, N. Z. Song, S. F. Liao, Y. Lian, J. T. Ma and Q. Jia: Sep. Purif. Technol., 2015, vol. 156, pp. 835–40.CrossRefGoogle Scholar
  13. 13.
    P. G. Ning, X. Lin, H. B. Cao and Y. Zhang: Sep. Purif. Technol., 2014, vol. 137, pp. 109–15.CrossRefGoogle Scholar
  14. 14.
    P. Sun, K. Huang, X. Q. Wang, W. Y. Song, H. Zheng and H. Z. Liu: Sep. Purif. Technol., 2017, vol. 179, pp. 504–12.CrossRefGoogle Scholar
  15. 15.
    Q. Y. Hu, J. M. Zhao, F. C. Wang, F. Huo and H. Z. Liu: Sep. Purif. Technol., 2014, vol. 131, pp. 94–101.CrossRefGoogle Scholar
  16. 16.
    X.-P. Liao, W. Tang, R.-Q. Zhou and B. Shi: Adsorption. 2007, vol. 14 (1), pp. 55–64.CrossRefGoogle Scholar
  17. 17.
    W. Li, Y. M. Zhang, J. Huang, X. B. Zhu and Y. Wang: Sep. Purif. Technol., 2012, vol. 96, pp. 44–49.CrossRefGoogle Scholar
  18. 18.
    Q. H. Shi, Y. M. Zhang, J. Huang, T. Liu, H. Liu and L. Y. Wang: Sep. Purif. Technol., 2017, vol. 181, pp. 1–7.CrossRefGoogle Scholar
  19. 19.
    X. Yang, Y. M. Zhang, S. X. Bao and C. Shen: Sep. Purif. Technol., 2016, vol. 164, pp. 49–55.CrossRefGoogle Scholar
  20. 20.
    J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: ISIJ Int., 2017, vol. 57 (6), pp. 970–77.CrossRefGoogle Scholar
  21. 21.
    J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: J Hazard Mater. 2017, vol. 336, pp. 1–7.CrossRefGoogle Scholar
  22. 22.
    J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: J. Clean. Prod., 2018, vol. 170, pp. 1089–101.CrossRefGoogle Scholar
  23. 23.
    J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: Metall. Mater. Trans. B., 2017, vol. 48 (5), pp. 2759–67.CrossRefGoogle Scholar
  24. 24.
    X. S. Li and B. Xie: Int. J. Miner. Metall. Mater., 2012, vol. 19 (7), pp. 595–601.CrossRefGoogle Scholar
  25. 25.
    H. Y. Li, H. X. Fang, K. Wang, W. Zhou, Z. Yang, X. M. Yan, W. S. Ge, Q. W. Li and B. Xie: Hydrometallurgy. 2015, vol. 156, pp. 124–35.CrossRefGoogle Scholar
  26. 26.
    M. Li, L. Xiao, J. J. Liu, Z. X. Shi, Z. B. Fu, Y. Peng, P. Z. Long and Y. J. Yang: Mater. Sci. Forum., 2016, vol. 863, pp. 144–48.CrossRefGoogle Scholar
  27. 27.
    X. F. Zhang, F. G. Liu, X. X. Xue and T. Jiang: J. Alloy. Comp., 2016, vol. 686, pp. 356–65.CrossRefGoogle Scholar
  28. 28.
    X. S. Li, Doctor’s Thesis, Chongqing University, 2011, pp. 59–75.Google Scholar
  29. 29.
    J. H. Zhang, Doctor’s Thesis, Northeastern University, 2014, pp. 45–61.Google Scholar
  30. 30.
    L. Wen: The Infrared Spectroscopy of Minerals, Chongqing University Press, Chongqing, 1989, pp. 28–52.Google Scholar
  31. 31.
    V. C. Farmer: The Infrared Spectra of Minerals, Science Press, Beijing, 1982, pp. 146–49.Google Scholar
  32. 32.
    N. V. Chukanov: Infrared Spectra of Mineral Species, Springer, New York, 2014, pp. 1023–572.CrossRefGoogle Scholar
  33. 33.
    N. R. Yang and W. H. Yue: The Handbook of Inorganic Matalloid Materials Atlas, Wuhan University of Technology Press, Wuhan, 2000, pp. 87–89.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jing Wen
    • 1
  • Tao Jiang
    • 1
    • 2
  • Yingzhe Xu
    • 1
  • Jiayi Liu
    • 1
  • Xiangxin Xue
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.Liaoning Key Laboratory for Recycling Science of Metallurgical ResourcesShenyangP.R. China

Personalised recommendations