Skip to main content
Log in

Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Mitra, and V.V.R. Rao: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1665-75.

    Article  Google Scholar 

  2. L. Zhang, and J. Wu: Acta Mater., 1998, vol. 46, pp. 3535-46.

    Article  Google Scholar 

  3. L. Zhang, and J. Wu: Scripta Mater., 1997, vol. 38, pp. 307-13.

    Article  Google Scholar 

  4. S. Kirihara, Y. Tomota, and T. Tsujimoto: Mater. Sci. Eng. A, 1997, vol. 239, pp. 600-04.

    Article  Google Scholar 

  5. J. Li, D. Jiang, and S. Tan: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 551-58.

    Article  Google Scholar 

  6. D. Gu, W. Meiners, C. Li, and Y. Shen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6340-45.

    Article  Google Scholar 

  7. J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J.M. Schneider, H. Högberg, and L. Hultman: Acta Mater., 2007, vol. 55, pp. 1479-88.

    Article  Google Scholar 

  8. J.F. Li, W. Pan, F. Sato, and R. Watanabe: Acta Mater., 2001, vol. 49, pp. 937-45.

    Article  Google Scholar 

  9. T. Zhen, M.W. Barsoum, and S.R. Kalidindi: Acta Mater., 2005, vol. 53, pp. 4163-71.

    Article  Google Scholar 

  10. Y. Liu, J. Chen, and Y. Zhou: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 3379-85.

    Article  Google Scholar 

  11. C.L. Yeh, and C.C. Hsu: J. Alloy. Compd., 2005, vol. 395, pp. 53-58.

    Article  Google Scholar 

  12. C.L. Yeh, W.H. Chen, and C.C. Hsu: J. Alloy. Compd., 2007, vol. 432, pp. 90-95.

    Article  Google Scholar 

  13. F. Simões, and B. Trindade: Mater. Sci. Eng. A, 2005, vol. 397, pp. 257-63.

    Article  Google Scholar 

  14. L. Wang, W. Jiang, C. Qin, and L. Chen: J. Mater. Sci., 2006, vol. 41, pp. 3831-35.

    Article  Google Scholar 

  15. L. Wang, W. Jiang, L. Chen, and G. Bai: J. Mater. Res., 2011, vol. 19, pp. 3004-08.

    Article  Google Scholar 

  16. L. Wang, W. Jiang, C. Qin, and L. Chen: Mater. Sci. Eng. A, 2006, vol. 425, pp. 219-24.

    Article  Google Scholar 

  17. J. Xu, L. Liu, L. Jiang, P. Munroe, and Z.-H. Xie: Ceram. Int., 2013, vol. 39, pp. 9471-81.

    Article  Google Scholar 

  18. V. Pasumarthi, Y. Chen, S.R. Bakshi, and A. Agarwal: J. Alloy. Compd., 2009, vol. 484, pp. 113-17.

    Article  Google Scholar 

  19. D.P. Riley, E.H. Kisi, and D. Phelan: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1051-58.

    Article  Google Scholar 

  20. T. Lapauw, K. Vanmeensel, K. Lambrinou, and J. Vleugels: Scripta Mater., 2016, vol. 111, pp. 98-101.

    Article  Google Scholar 

  21. X. Liu, Y. Jiang, H. Zhang, L. Yu, J. Kang, and Y. He: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1349-53.

    Article  Google Scholar 

  22. Z.F. Zhang, Z.M. Sun, H. Hashimoto, and T. Abe: Scripta Mater., 2001, vol. 45, pp. 1461-67.

    Article  Google Scholar 

  23. S.S. Hwang, S.W. Park, and T.W. Kim: J. Alloy. Compd., 2005, vol. 392, pp. 285-90.

    Article  Google Scholar 

  24. N.F. Gao, J.T. Li, D. Zhang, and Y. Miyamoto: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2365-70.

    Article  Google Scholar 

  25. C.L. Yeh, and Y.G. Shen: J. Alloy. Compd., 2008, vol. 458, pp. 286-91.

    Article  Google Scholar 

  26. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-64.

    Article  Google Scholar 

  27. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863-86.

    Article  Google Scholar 

  28. W. Xiao, and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215-28.

    Article  Google Scholar 

  29. R.O. Suzuki, and S. Fukui: Mater. Trans., 2004, vol. 45, pp. 1665-71.

    Article  Google Scholar 

  30. U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53, pp. 32-35.

    Article  Google Scholar 

  31. B. Zhao, X. Lu, Q. Zhong, C. Li, and S. Chen: Electrochim. Acta, 2010, vol. 55, pp. 2996-3001.

    Article  Google Scholar 

  32. A. Martin, D. Lambertint, J.-C. Poigne, M. Allibert, G. Bourges, L. Pescayre, and J. Fouletier: JOM, 2003, vol. 55, pp. 52-54.

    Article  Google Scholar 

  33. X. Zou, X. Li, B. Shen, X. Lu, Q. Xu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2017, vol. 48, pp. 678-91.

    Article  Google Scholar 

  34. X. Guan, U.B. Pal, Y. Jiang, and S. Su: J. Sustain. Metall., 2016, vol. 2, pp. 152-66.

    Article  Google Scholar 

  35. A. Krishnan, X.G. Lu, and U.B. Pal: Metall. Mater. Trans. B, 2005, vol. 36, pp. 463-73.

    Article  Google Scholar 

  36. U.B. Pal: JOM, 2008, vol. 60, pp. 43-47.

    Article  Google Scholar 

  37. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding: Electrochim. Acta, 2011, vol. 56, pp. 8430-37.

    Article  Google Scholar 

  38. X. Zou, X. Lu, C. Li, and B. Zhao: Trans. Inst. Min. Metall. C, 2011, vol. 120, pp. 118-24.

    Google Scholar 

  39. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou: Metall. Mater. Trans. B, 2012, vol. 43, pp. 503-12.

    Article  Google Scholar 

  40. X. Zou, and X. Lu: J. Manuf. Sci. Prod., 2013, vol. 13, pp. 55-59.

    Google Scholar 

  41. X.S. Ye, X.G. Lu, C.H. Li, W.Z. Ding, X.L. Zou, Y.H. Gao, and Q.D. Zhong: Int. J. Hydrogen Energ., 2011, vol. 36, pp. 4573-79.

    Article  Google Scholar 

  42. X. Zou, X. Lu, Z. Zhou, and C. Li: Electrochem. Commun., 2012, vol. 21, pp. 9-13

    Article  Google Scholar 

  43. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, and G.Z. Chen: J. Alloy. Compd., 2006, vol. 420, pp. 37-45.

    Article  Google Scholar 

  44. K. Chen, Y. Hua, C. Xu, Q. Zhang, C. Qi, and Y. Jie: Ceram. Int., 2015, vol. 41, pp. 11428-35.

    Article  Google Scholar 

  45. X. Zou, X. Lu, C. Li, and Z. Zhou: Electrochim. Acta, 2010, vol. 55, pp. 5173-79.

    Article  Google Scholar 

  46. G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041-52.

    Article  Google Scholar 

  47. J. Xu, B. Lo, Y. Jiang, U. Pal, and S. Basu: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 3887-96.

    Article  Google Scholar 

  48. E. Wu, E.H. Kisi, D.P. Riley, and R.I. Smith: J. Am. Ceram. Soc., 2002, vol. 85, pp. 3084-86.

    Article  Google Scholar 

  49. D.P. Riley, E.H. Kisi, T.C. Hansen, and A.W. Hewat: J. Am. Ceram. Soc., 2002, vol. 85, pp. 2417-24.

    Article  Google Scholar 

  50. X. Yang, J. Fu, C. Jin, J. Chen, C. Liang, M. Wu, and W. Zhou: J. Am. Chem. Soc., 2010, vol. 132, pp. 14279-87.

    Article  Google Scholar 

  51. C. Schwandt, and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66-76.

    Article  Google Scholar 

  52. L. Sun, Q. Song, Q. Xu, Z. Ning, X. Lu, and D. Fray: New J. Chem., 2015, vol. 39, pp. 4391-97.

    Article  Google Scholar 

  53. X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding: J. Mater. Chem. A, 2014, vol. 2, pp. 7421-30.

    Article  Google Scholar 

  54. R.O. Suzuki, M. Aizawa, and K. Ono: J. Alloy. Compd., 1999, vol. 288, pp. 173-82.

    Article  Google Scholar 

  55. Y. Deng, D. Wang, W. Xiao, X. Jin, X. Hu, and G.Z. Chen: J. Phys. Chem. B, 2005, vol. 109, pp. 14043-51.

    Article  Google Scholar 

  56. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G.Z. Chen: Chemphyschem, 2006, vol. 7, pp. 1750-58.

    Article  Google Scholar 

  57. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC Adv., 2012, vol. 2, pp. 7588-93.

    Article  Google Scholar 

  58. X. Zou, K. Zheng, X. Lu, Q. Xu, and Z. Zhou: Faraday Discuss., 2016, vol. 190, pp. 53-69.

    Article  Google Scholar 

  59. X. Zou, C. Chen, X. Lu, S. Li, Q. Xu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2017, vol. 48, pp. 664-77.

    Article  Google Scholar 

  60. H. Jiao, Q. Wang, J. Ge, H. Sun, and S. Jiao: J. Alloy. Compd., 2014, vol. 582, pp. 146-50.

    Article  Google Scholar 

  61. I. Barin: Thermochemical Data of Pure Substances, K. Sora and J. Gardiner, eds., 3rd ed., Wiley, Weinheim, 1995, vol. 1, pp. 48–1692.

  62. D.T.L. Alexander, C. Schwandt, and D.J. Fray: Electrochim. Acta, 2011, vol. 56, pp. 3286-95.

    Article  Google Scholar 

  63. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287-95.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 51574164, 51664005, 51225401, and 51304132), the National Basic Research Program of China (No. 2014CB643403), the Science and Technology Commissions of Shanghai Municipality (No. 14JC1491400), and the Young Teacher Training Program of Shanghai Municipal Education Commission for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingli Zou or Xionggang Lu.

Additional information

Manuscript submitted March 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zou, X., Zheng, K. et al. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2. Metall Mater Trans B 49, 790–802 (2018). https://doi.org/10.1007/s11663-018-1192-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1192-0

Keywords

Navigation