Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 2, pp 790–802 | Cite as

Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

  • Shangshu Li
  • Xingli Zou
  • Kai Zheng
  • Xionggang Lu
  • Chaoyi Chen
  • Xin Li
  • Qian Xu
  • Zhongfu Zhou
Article

Abstract

Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

Notes

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 51574164, 51664005, 51225401, and 51304132), the National Basic Research Program of China (No. 2014CB643403), the Science and Technology Commissions of Shanghai Municipality (No. 14JC1491400), and the Young Teacher Training Program of Shanghai Municipal Education Commission for financial support.

References

  1. 1.
    R. Mitra, and V.V.R. Rao: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1665-75.CrossRefGoogle Scholar
  2. 2.
    L. Zhang, and J. Wu: Acta Mater., 1998, vol. 46, pp. 3535-46.CrossRefGoogle Scholar
  3. 3.
    L. Zhang, and J. Wu: Scripta Mater., 1997, vol. 38, pp. 307-13.CrossRefGoogle Scholar
  4. 4.
    S. Kirihara, Y. Tomota, and T. Tsujimoto: Mater. Sci. Eng. A, 1997, vol. 239, pp. 600-04.CrossRefGoogle Scholar
  5. 5.
    J. Li, D. Jiang, and S. Tan: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 551-58.CrossRefGoogle Scholar
  6. 6.
    D. Gu, W. Meiners, C. Li, and Y. Shen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6340-45.CrossRefGoogle Scholar
  7. 7.
    J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J.M. Schneider, H. Högberg, and L. Hultman: Acta Mater., 2007, vol. 55, pp. 1479-88.CrossRefGoogle Scholar
  8. 8.
    J.F. Li, W. Pan, F. Sato, and R. Watanabe: Acta Mater., 2001, vol. 49, pp. 937-45.CrossRefGoogle Scholar
  9. 9.
    T. Zhen, M.W. Barsoum, and S.R. Kalidindi: Acta Mater., 2005, vol. 53, pp. 4163-71.CrossRefGoogle Scholar
  10. 10.
    Y. Liu, J. Chen, and Y. Zhou: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 3379-85.CrossRefGoogle Scholar
  11. 11.
    C.L. Yeh, and C.C. Hsu: J. Alloy. Compd., 2005, vol. 395, pp. 53-58.CrossRefGoogle Scholar
  12. 12.
    C.L. Yeh, W.H. Chen, and C.C. Hsu: J. Alloy. Compd., 2007, vol. 432, pp. 90-95.CrossRefGoogle Scholar
  13. 13.
    F. Simões, and B. Trindade: Mater. Sci. Eng. A, 2005, vol. 397, pp. 257-63.CrossRefGoogle Scholar
  14. 14.
    L. Wang, W. Jiang, C. Qin, and L. Chen: J. Mater. Sci., 2006, vol. 41, pp. 3831-35.CrossRefGoogle Scholar
  15. 15.
    L. Wang, W. Jiang, L. Chen, and G. Bai: J. Mater. Res., 2011, vol. 19, pp. 3004-08.CrossRefGoogle Scholar
  16. 16.
    L. Wang, W. Jiang, C. Qin, and L. Chen: Mater. Sci. Eng. A, 2006, vol. 425, pp. 219-24.CrossRefGoogle Scholar
  17. 17.
    J. Xu, L. Liu, L. Jiang, P. Munroe, and Z.-H. Xie: Ceram. Int., 2013, vol. 39, pp. 9471-81.CrossRefGoogle Scholar
  18. 18.
    V. Pasumarthi, Y. Chen, S.R. Bakshi, and A. Agarwal: J. Alloy. Compd., 2009, vol. 484, pp. 113-17.CrossRefGoogle Scholar
  19. 19.
    D.P. Riley, E.H. Kisi, and D. Phelan: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1051-58.CrossRefGoogle Scholar
  20. 20.
    T. Lapauw, K. Vanmeensel, K. Lambrinou, and J. Vleugels: Scripta Mater., 2016, vol. 111, pp. 98-101.CrossRefGoogle Scholar
  21. 21.
    X. Liu, Y. Jiang, H. Zhang, L. Yu, J. Kang, and Y. He: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1349-53.CrossRefGoogle Scholar
  22. 22.
    Z.F. Zhang, Z.M. Sun, H. Hashimoto, and T. Abe: Scripta Mater., 2001, vol. 45, pp. 1461-67.CrossRefGoogle Scholar
  23. 23.
    S.S. Hwang, S.W. Park, and T.W. Kim: J. Alloy. Compd., 2005, vol. 392, pp. 285-90.CrossRefGoogle Scholar
  24. 24.
    N.F. Gao, J.T. Li, D. Zhang, and Y. Miyamoto: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2365-70.CrossRefGoogle Scholar
  25. 25.
    C.L. Yeh, and Y.G. Shen: J. Alloy. Compd., 2008, vol. 458, pp. 286-91.CrossRefGoogle Scholar
  26. 26.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-64.CrossRefGoogle Scholar
  27. 27.
    A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863-86.CrossRefGoogle Scholar
  28. 28.
    W. Xiao, and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215-28.CrossRefGoogle Scholar
  29. 29.
    R.O. Suzuki, and S. Fukui: Mater. Trans., 2004, vol. 45, pp. 1665-71.CrossRefGoogle Scholar
  30. 30.
    U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53, pp. 32-35.CrossRefGoogle Scholar
  31. 31.
    B. Zhao, X. Lu, Q. Zhong, C. Li, and S. Chen: Electrochim. Acta, 2010, vol. 55, pp. 2996-3001.CrossRefGoogle Scholar
  32. 32.
    A. Martin, D. Lambertint, J.-C. Poigne, M. Allibert, G. Bourges, L. Pescayre, and J. Fouletier: JOM, 2003, vol. 55, pp. 52-54.CrossRefGoogle Scholar
  33. 33.
    X. Zou, X. Li, B. Shen, X. Lu, Q. Xu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2017, vol. 48, pp. 678-91.CrossRefGoogle Scholar
  34. 34.
    X. Guan, U.B. Pal, Y. Jiang, and S. Su: J. Sustain. Metall., 2016, vol. 2, pp. 152-66.CrossRefGoogle Scholar
  35. 35.
    A. Krishnan, X.G. Lu, and U.B. Pal: Metall. Mater. Trans. B, 2005, vol. 36, pp. 463-73.CrossRefGoogle Scholar
  36. 36.
    U.B. Pal: JOM, 2008, vol. 60, pp. 43-47.CrossRefGoogle Scholar
  37. 37.
    X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding: Electrochim. Acta, 2011, vol. 56, pp. 8430-37.CrossRefGoogle Scholar
  38. 38.
    X. Zou, X. Lu, C. Li, and B. Zhao: Trans. Inst. Min. Metall. C, 2011, vol. 120, pp. 118-24.Google Scholar
  39. 39.
    X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou: Metall. Mater. Trans. B, 2012, vol. 43, pp. 503-12.CrossRefGoogle Scholar
  40. 40.
    X. Zou, and X. Lu: J. Manuf. Sci. Prod., 2013, vol. 13, pp. 55-59.Google Scholar
  41. 41.
    X.S. Ye, X.G. Lu, C.H. Li, W.Z. Ding, X.L. Zou, Y.H. Gao, and Q.D. Zhong: Int. J. Hydrogen Energ., 2011, vol. 36, pp. 4573-79.CrossRefGoogle Scholar
  42. 42.
    X. Zou, X. Lu, Z. Zhou, and C. Li: Electrochem. Commun., 2012, vol. 21, pp. 9-13CrossRefGoogle Scholar
  43. 43.
    M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, and G.Z. Chen: J. Alloy. Compd., 2006, vol. 420, pp. 37-45.CrossRefGoogle Scholar
  44. 44.
    K. Chen, Y. Hua, C. Xu, Q. Zhang, C. Qi, and Y. Jie: Ceram. Int., 2015, vol. 41, pp. 11428-35.CrossRefGoogle Scholar
  45. 45.
    X. Zou, X. Lu, C. Li, and Z. Zhou: Electrochim. Acta, 2010, vol. 55, pp. 5173-79.CrossRefGoogle Scholar
  46. 46.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041-52.CrossRefGoogle Scholar
  47. 47.
    J. Xu, B. Lo, Y. Jiang, U. Pal, and S. Basu: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 3887-96.CrossRefGoogle Scholar
  48. 48.
    E. Wu, E.H. Kisi, D.P. Riley, and R.I. Smith: J. Am. Ceram. Soc., 2002, vol. 85, pp. 3084-86.CrossRefGoogle Scholar
  49. 49.
    D.P. Riley, E.H. Kisi, T.C. Hansen, and A.W. Hewat: J. Am. Ceram. Soc., 2002, vol. 85, pp. 2417-24.CrossRefGoogle Scholar
  50. 50.
    X. Yang, J. Fu, C. Jin, J. Chen, C. Liang, M. Wu, and W. Zhou: J. Am. Chem. Soc., 2010, vol. 132, pp. 14279-87.CrossRefGoogle Scholar
  51. 51.
    C. Schwandt, and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66-76.CrossRefGoogle Scholar
  52. 52.
    L. Sun, Q. Song, Q. Xu, Z. Ning, X. Lu, and D. Fray: New J. Chem., 2015, vol. 39, pp. 4391-97.CrossRefGoogle Scholar
  53. 53.
    X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding: J. Mater. Chem. A, 2014, vol. 2, pp. 7421-30.CrossRefGoogle Scholar
  54. 54.
    R.O. Suzuki, M. Aizawa, and K. Ono: J. Alloy. Compd., 1999, vol. 288, pp. 173-82.CrossRefGoogle Scholar
  55. 55.
    Y. Deng, D. Wang, W. Xiao, X. Jin, X. Hu, and G.Z. Chen: J. Phys. Chem. B, 2005, vol. 109, pp. 14043-51.CrossRefGoogle Scholar
  56. 56.
    W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G.Z. Chen: Chemphyschem, 2006, vol. 7, pp. 1750-58.CrossRefGoogle Scholar
  57. 57.
    W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC Adv., 2012, vol. 2, pp. 7588-93.CrossRefGoogle Scholar
  58. 58.
    X. Zou, K. Zheng, X. Lu, Q. Xu, and Z. Zhou: Faraday Discuss., 2016, vol. 190, pp. 53-69.CrossRefGoogle Scholar
  59. 59.
    X. Zou, C. Chen, X. Lu, S. Li, Q. Xu, Z. Zhou, and W. Ding: Metall. Mater. Trans. B, 2017, vol. 48, pp. 664-77.CrossRefGoogle Scholar
  60. 60.
    H. Jiao, Q. Wang, J. Ge, H. Sun, and S. Jiao: J. Alloy. Compd., 2014, vol. 582, pp. 146-50.CrossRefGoogle Scholar
  61. 61.
    I. Barin: Thermochemical Data of Pure Substances, K. Sora and J. Gardiner, eds., 3rd ed., Wiley, Weinheim, 1995, vol. 1, pp. 48–1692.Google Scholar
  62. 62.
    D.T.L. Alexander, C. Schwandt, and D.J. Fray: Electrochim. Acta, 2011, vol. 56, pp. 3286-95.CrossRefGoogle Scholar
  63. 63.
    R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287-95.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Shangshu Li
    • 1
  • Xingli Zou
    • 1
    • 2
  • Kai Zheng
    • 1
  • Xionggang Lu
    • 1
  • Chaoyi Chen
    • 3
  • Xin Li
    • 1
  • Qian Xu
    • 1
  • Zhongfu Zhou
    • 1
    • 4
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiP.R. China
  2. 2.Center for Electrochemistry, Department of ChemistryThe University of Texas at AustinAustinUSA
  3. 3.School of Materials and MetallurgyGuizhou UniversityGuiyangP.R. China
  4. 4.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythUK

Personalised recommendations