Skip to main content
Log in

Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.T. Li, Vinod K. Murugan, Z.L. Dong, and K.A. Khor: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1054–58.

    Article  Google Scholar 

  2. V.V. Stolyarov, R. Lapovok, I.G. Brodova, and P.F. Thomson: Mater. Sci. Eng. A, 2003, vol. 357, pp. 159–67.

    Article  Google Scholar 

  3. A. Hamid, H.E. Mohammad, and E. Rahmatollah: Acta Metall. Sin.-Engl., 2015, vol. 28, pp. 83–92.

    Article  Google Scholar 

  4. M. Abo-Elsoud: J. Mater. Sci. Technol., 2012, vol. 28, pp. 27–33.

    Article  Google Scholar 

  5. P. Moldovan, G. Popescu, and F. Miculescu: J. Mater. Process. Technol., 2004, vol. 153, pp. 408–15.

    Article  Google Scholar 

  6. S.B. Sun, L.J. Zheng, J.H. Liu, and H. Zhang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 389–96.

    Article  Google Scholar 

  7. V.V. Tcherdyntsev, S.D. Kaloshkin, D.V. Gunderov, E.A. Afonina, I.G. Brodova, V.V. Stolyarov, Y.V. Baldokhin, E.V. Shelekhov, and I.A. Tomilin: Mater. Sci. Eng. A, 2004, vol. 375, pp. 888–93.

    Article  Google Scholar 

  8. J.M. Cubero-Sesin and Z. Horita: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5182–92.

    Article  Google Scholar 

  9. Y.L. Liu, L. Luo, C.F. Han, L.Y. Ou, J.J. Wang, and C.Z. Liu: J. Mater. Sci. Technol., 2016, vol. 32, pp. 305–12.

    Article  Google Scholar 

  10. Q.R. Zhao, Z. Qian, X.L. Cui, Y.Y. Wu, and X.F. Liu: J. Alloy Compd., 2016, vol. 666, pp. 50–57.

    Article  Google Scholar 

  11. J. Du, Y.T. Shi, M.C. Zhou, and W.F. Li: J. Mater. Sci. Technol., 2013, vol. 23, pp. 1297–1302.

    Google Scholar 

  12. Z.M. Shi, K. Gao, Y.T. Shi, and Y. Wang: Mater. Sci. Eng. A, 2015, vol. 632, pp. 62–71.

    Article  Google Scholar 

  13. D. Holland-Moritz, J. Schroers, D.M. Herlach, B. Grushko, and K. Urban: Acta Mater., 1998, vol. 46, pp. 1601–15.

    Article  Google Scholar 

  14. S.S. Nayak, B.S. Murty, and S.K. Pabi: J. Mater. Sci., 2008, vol. 31, pp. 449–54.

    Google Scholar 

  15. T. Dorin, N. Stanford, N. Birbilis, and R.K. Gupta: Corros. Sci., 2015, vol. 100, pp. 396–403.

    Article  Google Scholar 

  16. O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev, and J. Liu: Scripta Mater., 1998, vol. 38, pp. 1511–16.

    Article  Google Scholar 

  17. J.M. Hu, J. Teng, X.K. Ji, X.X. Kong, F.L. Jiang, and H. Zhang: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4769–75.

    Article  Google Scholar 

  18. J.M. Cubero-Sesin and Z. Horita: J. Mater. Sci., 2013, vol. 48, pp. 4713–22.

    Article  Google Scholar 

  19. J.M. Cubero-Sesin and Z. Horita: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5182–92.

    Article  Google Scholar 

  20. K. Hyoung-Wook, K. Suk-Bong, T. Nobuhiro, and M. Yoritoshi: Acta Mater., 2005, vol. 53, pp. 1737–49.

    Article  Google Scholar 

  21. D. Azimi-Yancheshmeh and M. Aghaiekhafri: Defect Diff. Forum, 2011, vols. 312–315, pp. 166–71.

    Article  Google Scholar 

  22. X.X. Kong, H. Zhang, and X.K. Ji: Mater. Sci. Eng. A, 2014, vol. 612, pp. 131–39.

    Article  Google Scholar 

  23. R.G. Guan and T. Di: Acta Metall. Sin.-Engl., 2017, vol. 5, pp. 1–24.

    Google Scholar 

  24. Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra: Acta Mater., 2015, vol. 100, pp. 247–55.

    Article  Google Scholar 

  25. N. Su, R.G. Guan, X. Wang, Y.X. Wang, W.S. Jiang, and H.N. Liu: J. Alloy Compd., 2016, vol. 680, pp. 283–90.

    Article  Google Scholar 

  26. Y.X. Wang, R.G. Guan, D.W. Hou, Y. Zhang, W.S. Jiang, and H.N. Liu: J. Mater. Sci., 2017, vol. 52, pp. 1137–48.

    Article  Google Scholar 

  27. R.G. Guan, Y.F. Shen, Z.Y. Zhao, and X. Wang: J. Mater. Sci. Technol., 2016, vol. 33, pp. 215–23.

    Article  Google Scholar 

  28. R.Z. Chao, X.H. Guan, R.G. Guan, D. Tie, C. Lian, X. Wang, and J. Zhang: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 3164–69.

    Article  Google Scholar 

  29. K.M. Zhang, J.X. Zou, J. Li, and Z.S. Yu: J. Mater. Sci. Technol., 2014, vol. 30, pp. 263–67.

    Article  Google Scholar 

  30. ASTME112: Standard Test Methods for Determining Average Grain Size, 2010.

  31. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, and Y. Watanabe: Acta Mater., 2008, vol. 56, pp. 821–34.

    Article  Google Scholar 

  32. S. Miyazaki, A. Kawachi, S. Kumai, and A. Sato: Mater. Sci. Eng. A, 2005, vol. 400, pp. 294–99.

    Article  Google Scholar 

  33. W. Blum, J. Dvorak, P. Kral, P. Eisenlohr, and V. Sklenička: J. Mater. Sci. Technol., 2017, vol. 32, pp. 1309–20.

    Article  Google Scholar 

  34. P.Y. Zhu and Q.Y. Liu: Mater. Sci. Technol., 2013, vol. 2, pp. 500–07.

    Article  Google Scholar 

  35. L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2161–74.

    Article  Google Scholar 

  36. H. Sayed and I. Kovács: Phys. Status Solidi, 2010, vol. 24, pp. 45–47.

    Article  Google Scholar 

  37. A. Torres, S. Serna, C. Patino, and G. Rosas: Acta Metall. Sin.-Engl., 2015, vol. 28, pp. 1117–22.

    Article  Google Scholar 

  38. P.J. Apps, J.R Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    Article  Google Scholar 

  39. P.J. Apps, M. Berta, and P.B. Prangnell: Acta Mater., 2005, vol. 53, pp. 499–511.

    Article  Google Scholar 

  40. I. Nikulin, A. Kipelova, S. Malopheyev, and R. Kaibyshev: Acta Mater., 2012, vol. 60, pp. 487–97.

    Article  Google Scholar 

  41. C.Y. Barlow, N. Hansen, and Y.L. Liu: Acta Mater., 2002, vol. 50, pp. 171–82.

    Article  Google Scholar 

  42. T.A. Bennett, R.H. Petrov, L.A.I. Kestens, L.Z. Zhuang, and P.D. Smet: Scripta Mater., 2010, vol. 63, pp. 461–64.

    Article  Google Scholar 

  43. F.J. Humphreys and M.G. Ardakani: Acta Mater., 1996, vol. 44, pp. 2717–27.

    Article  Google Scholar 

  44. K. Chang, W. Feng, and L.Q. Chen: Acta Mater., 2009, vol. 57, pp. 5229–36.

    Article  Google Scholar 

  45. L.S. Shvindlerman, E. Jannot, and G. Gottstein: Acta Mater., 2007, vol. 55, pp. 3397–3401.

    Article  Google Scholar 

  46. J. Zhou, S.H. Zhang, X.N. Wang, B.B. Zhao, X.P. Dong, and L.T. Zhang: Scripta Mater., 2016, vol. 116, pp. 100–03.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support of the National Natural Science Foundation of China, under Grant No. 51674077, and the Fundamental Research Funds for the Central Universities, under Grant No. N150204016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Guo Guan.

Additional information

Manuscript submitted July 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guan, RG., Tie, D. et al. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming. Metall Mater Trans B 49, 490–498 (2018). https://doi.org/10.1007/s11663-018-1185-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1185-z

Keywords

Navigation