Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

Abstract

The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase (i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    [1] D.B. Spencer, R. Mehrabian and M.C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32. doi:10.1007/BF02642580

    Article  Google Scholar 

  2. 2.

    [2] H.V. Atkinson: Prog. Mater. Sci., 2005, vol. 50, pp. 341–412. doi: 10.1016/j.pmatsci.2004.04.003

    Article  Google Scholar 

  3. 3.

    [3] M.C. Flemings: Metall. Trans. B, 1991, vol. 22, pp. 269–93. doi: 10.1007/BF02661090

    Article  Google Scholar 

  4. 4.

    [4] S. Zabler, A. Ershov, A. Rack, F. Garcia-Moreno, T. Baumbach and J. Banhart: Acta Mater., 2013, vol. 61, pp. 1244–53. doi: 10.1016/j.actamat.2012.10.047

    Article  Google Scholar 

  5. 5.

    [5] B. Cai, S. Karagadde, L. Yuan, T.J. Marrow, T. Connolley and P.D. Lee: Acta Mater., 2014, vol. 76, pp. 371–80. doi: 10.1016/j.actamat.2014.05.035

    Article  Google Scholar 

  6. 6.

    [6] T. Werz, M. Baumann, U. Wolfram and C.E. Krill III: Mater. Charact., 2014, vol. 90, pp. 185–95. doi: 10.1016/j.matchar.2014.01.022

    Article  Google Scholar 

  7. 7.

    [7] K. Du, Q. Zhu, D. Li and F. Zhang: Mater. Charact., 2015, vol. 106, pp. 134–40. doi: 10.1016/j.matchar.2015.05.035

    Article  Google Scholar 

  8. 8.

    [8] D. Phelan, N. Stanford and R. Dippenaar: Mater. Sci. Eng. A, 2005, vol. 407, pp. 127–34. doi: 10.1016/j.msea.2005.07.015

    Article  Google Scholar 

  9. 9.

    [9] D. Zhang, H. Terasaki and Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369–78. doi: 10.1016/j.actamat.2009.10.043

    Article  Google Scholar 

  10. 10.

    [10] M.M. Attallah, H. Terasaki, R.J. Moat, S.E. Bray, Y. Komizo and M. Preuss: Mater. Charact., 2011, vol. 62, pp. 760–67. doi: 10.1016/j.matchar.2011.05.001

    Article  Google Scholar 

  11. 11.

    Y. Komizo and H. Terasaki (2010) In situ study of phase transformation in steel during welding. In: T. Kannengiesser, S.S. Babu, Y. Komizo and A.J. Ramirez (Eds.), In situ studies with photons, neutrons and electrons scattering. Springer, Berlin, pp. 1–11. doi: 10.1007/978-3-642-14794-4_1

    Google Scholar 

  12. 12.

    [12] I. Sohn and R. Dippenaar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083–94. doi: 10.1007/s11663-016-0675-0

    Article  Google Scholar 

  13. 13.

    [13] G.C. Gu, R. Pesci, L. Langlois, E. Becker, R. Bigot and M.X. Guo: Acta Mater., 2014, vol. 66, pp. 118–31. doi: 10.1016/j.actamat.2013.11.075

    Article  Google Scholar 

  14. 14.

    [14] X.G. Hu, Q. Zhu, H.X. Lu, F. Zhang, D.Q. Li and S.P. Midson: J. Alloy. Compd., 2015, vol. 649, pp. 204–10. doi: 10.1016/j.jallcom.2015.07.121

    Article  Google Scholar 

  15. 15.

    S.P Midson: Solid State Phenom., 2015, vol. 217-218, pp. 487–95. doi: 10.4028/www.scientific.net/SSP.217-218.487

    Google Scholar 

  16. 16.

    S.P. Midson: in Comprehensive Materials Processing, S. Hashimi, ed., Elsevier, Oxford, 2014, vol. 5, pp. 259–74. doi:10.1016/B978-0-08-096532-1.00517-3

  17. 17.

    [17] M. Tsuchiya, H. Ueno and I. Takagi: JSAE Rev., 2003, vol. 24, pp. 205–14. doi: 10.1016/S0389-4304(03)00013-4

    Article  Google Scholar 

  18. 18.

    [18] F. Pahlevani and M. Nili-Ahmadabadi: Int. J. Cast. Metal. Res., 2004, vol. 17, pp. 157–61. doi: 10.1179/136404604225020560

    Article  Google Scholar 

  19. 19.

    [19] M. Ramadan, M. Takita and H. Nomura: Mater. Sci. Eng. A, 2006, vol. 417, pp. 166–73. doi: 10.1016/j.msea.2005.10.054

    Article  Google Scholar 

  20. 20.

    [20] M. Ramadan, N. El-Bagoury, N. Fathy, M.A. Waly and A.A. Nofal: J. Mater. Sci., 2011, vol. 46, pp. 4013–19. doi: 10.1007/s10853-011-5329-7

    Article  Google Scholar 

  21. 21.

    [21] B. Abbasi-Khazaei and S. Ghaderi: J. Mater. Sci. Technol., 2012, vol. 28, pp. 946–50. doi: 10.1016/S1005-0302(12)60156-X

    Article  Google Scholar 

  22. 22.

    [22] J. Cui, H. Zhang, L. Chen, H. Li and W. Tong: Acta Metall. Sin., 2014, vol. 27, pp. 476–82. doi: 10.1007/s40195-014-0067-x

    Article  Google Scholar 

  23. 23.

    [23] A.S. Roca, H.D.C. Fals, J.A. Pedron and E.J. Zoqui: J. Mater. Process. Technol., 2012, vol. 212, pp. 1225–35. doi: 10.1016/j.jmatprotec.2012.01.012

    Article  Google Scholar 

  24. 24.

    [24] R.L. Nadal, A.S. Roca, H.D.C Fals and E.J. Zoqui: J. Mater. Process. Technol., 2015, vol. 226, pp. 146–56. doi: 10.1016/j.jmatprotec.2015.07.015

    Article  Google Scholar 

  25. 25.

    [25] A.M. Camacho, H.V. Atkinson, P. Kapranos and B.B. Argent: Acta Mater., 2003, vol. 51, pp. 2319–30. doi: 10.1016/S1359-6454(03)00040-5

    Article  Google Scholar 

  26. 26.

    ASTM A247-16a: Standard test method for evaluating the microstructure of graphite in iron castings, ASTM International, West Conshohocken, PA, 2016. Doi:10.1520/A0247-16A

  27. 27.

    ASTM E112-13: Standard test methods for determining average grain size, ASTM International, West Conshohocken, PA, 2013. doi:10.1520/E0112

  28. 28.

    [28] G.L Rivera, R.E. Boeri and J.A. Sikora: Scr. Mater., 2004, vol. 50, pp. 331–35. doi: 10.1016/j.scriptamat.2003.10.019

    Article  Google Scholar 

  29. 29.

    D.M. Stefanescu: in Properties and Selection: Irons, Steels and High Performance Alloys, ASM Handbook, ASM International, 1990, vol. 1, pp. 3–11. ISBN: 978-0-87170-377-4

  30. 30.

    [30] W. Xue and Y. Li: J. Alloy. Compd., 2016, vol. 689, pp. 408–15. doi: 10.1016/j.jallcom.2016.07.052

    Article  Google Scholar 

  31. 31.

    [31] K. Nakajima, M. Apel and I. Steinbach: Acta Mater., 2006, vol. 54, pp. 3665–72. doi: 10.1016/j.actamat.2006.03.050

    Article  Google Scholar 

  32. 32.

    [32] D. Liu, H.V. Atkinson and H. Jones: Acta Mater., 2005, vol. 53, pp. 3807–19. doi: 10.1016/j.actamat.2005.04.028

    Article  Google Scholar 

  33. 33.

    P.J. Uggowitzer and D.I. Uhlenhaut: in Thixoforming: Semi-solid Metal Processing, G. Hirt and R. Kopp, eds., Wiley-VCH, Weinheim, 2009, pp. 29–42. doi:10.1002/9783527623969.ch2

  34. 34.

    [34] C.A. Schneider, W.S. Rasband and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75. doi: 10.1038/nmeth.2089

    Article  Google Scholar 

  35. 35.

    [35] H. Wabusseg, G.C. Gullo, P.J. Uggowitzer, K. Steinhoff and H. Kaufmann: J. Mater. Sci., 2002, vol. 37, pp. 1173–78. doi: 10.1023/A:1014315421781

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by São Paulo Research FoundationFAPESP under Grant Numbers 2011/19997-0 and 2015/06965-3. The authors would like to thank IMBIL Industry and Maintenance of Pumps ITA Ltda. for producing the cast iron and the Joining and Welding Research Institute, Osaka University, and the School of Mechanical Engineering, University of CampinasUNICAMP, for providing the necessary facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugenio José Zoqui.

Additional information

Manuscript submitted December 20, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 22960 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benati, D.M., Ito, K., Kohama, K. et al. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron. Metall Mater Trans B 48, 2293–2303 (2017). https://doi.org/10.1007/s11663-017-1018-5

Download citation

Keywords

  • High-temperature Laser Scanning Confocal Microscopy (HT-CLSM)
  • Semisolid State
  • Graphite Precipitation
  • Semisolid Processing
  • Eutectic Phase