Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

Abstract

This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A. Umbrashko, E. Baake, B. Nacke, A. Jakovics: Met. Mater. Trans. B, 2006, vol. 37B, pp. 831-838.

    Article  Google Scholar 

  2. 2.

    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2012, vol. 48, pp. 677-686.

    Google Scholar 

  3. 3.

    M. Kirpo, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2007, vol. 43, pp. 161-162.

    Google Scholar 

  4. 4.

    S. Pavlovs, A. Jakoviċs, E. Baake, B. Nacke, M. Kirpo: Magnetohydrodynamics, 2011, vol. 47, no. 4, pp. 399-412.

    Google Scholar 

  5. 5.

    C. Trakas, P. Tabeling, J. P. Chabrerie: Journal de Mécanique Théorique et Appliquée, 1984, vol. 3, pp. 345-370.

    Google Scholar 

  6. 6.

    D. J. Moore, J. C. R. Hunt: Progress in Astronautics & Aeronautics, 1983, vol. 84, pp. 359-373.

    Google Scholar 

  7. 7.

    Y. Takeda: Nucl. Techn., 1987, vol. 79, pp. 120-124.

    Google Scholar 

  8. 8.

    T. Wondrak, S. Eckert, G. Gerbeth, F. Stefani, K. Timmel, A. J. Peyton, N. Terzija, W. Yin: Steel Research Int., 2014, vol. 85, pp. 1266–1273.

    Article  Google Scholar 

  9. 9.

    K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 46B, no. 2, pp. 700-710.

    Article  Google Scholar 

  10. 10.

    S. Taniguchi, J. K. Brimacombe: ISIJ Int., 1994, vol. 34, pp. 722-731.

    Article  Google Scholar 

  11. 11.

    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Int. J. Multiphase Flow, 2014, vol. 64, pp. 19-27.

    Article  Google Scholar 

  12. 12.

    M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, Z. Morita: ISIJ Int., 1995, vol. 35, pp. 1354-1361.

    Article  Google Scholar 

  13. 13.

    V. F. Chevrier, A. W. Cramb: Met. Mater. Trans. B, 2000, vol. 31B, pp. 537-540.

    Article  Google Scholar 

  14. 14.

    X. Dai, X. Yang, J. Campbell, J. Wood: Mater Sci. Eng. A, 2003, vol.354, pp. 315-325.

    Article  Google Scholar 

  15. 15.

    W. Mirihanage, W. Xu, J. Tamayo-Ariztondo, D. Eskin, M. Garcia-Fernandez, P. Srirangam, P. Lee: Materials Letters, 2016, vol. 164, pp. 484-487.

    Article  Google Scholar 

  16. 16.

    N. Takenaka, T. Fujii, A. Ono, K. Sonoda, S. Tazawa, T. Nakanii: Nondestructive Testing & Evaluation, 1994, vol. 11, no. 2-3, pp. 107-113.

    Article  Google Scholar 

  17. 17.

    Y. Saito, K. Mishima, Y. Tibita, T. Suzuki, M. Matsubayashi: Appl. Radiation & Isotopes, 2004, vol. 61, pp. 683-691.

    Article  Google Scholar 

  18. 18.

    Y. Saito, K. Mishima, Y. Tobita, T. Suzuki, M. Matsubayashi: Exp. Therm. Fluid Sci., 2005, vol. 29, no. 3, pp. 323-330.

    Article  Google Scholar 

  19. 19.

    M. Ščepanskis, M. Sarma, R. Nikoluškins, K. Thomsen, A. Jakovičs, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Magnetohydrodynamics, 2015, vol. 51, pp. 257-265.

    Google Scholar 

  20. 20.

    M. Sarma, M. Ščepanskis, A. Jakovičs, K. Thomsen, R. Nikoluškins, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Physics Procedia, 2015, vol. 69, pp. 457-463.

    Article  Google Scholar 

  21. 21.

    E. H. Lehmann, P. Vontobel, L. Wiezel: Nondestr. Test. Eval., 2001, vol. 16, pp. 191-202.

    Article  Google Scholar 

  22. 22.

    A. P. Kaestner, B. Műnch, P. Trtik, L. Butler: Opt. Eng., 2011, vol. 50, no. 12, p. 123201.

    Article  Google Scholar 

  23. 23.

    A. Bojarevics, T. Beinerts: Magnetohydrodynamics, 2010, vol. 46, pp. 333-338.

    Google Scholar 

  24. 24.

    T. Beinerts, I. Bucenieks, A. Bojarevičs, Y. Gelfgat: Magnetohydrodynamics, 2015, vol. 51, no. 4, pp. 757-770.

    Google Scholar 

  25. 25.

    M. Ščepanskis, E. Yu. Koroteeva, V. Geža, A. Jakovičs: Magnetohydrodynamics, 2015, vol. 51, no. 1, pp. 37-44.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Social Fund (Project. No. 2013/0018/1DP/1.1.1.2.0/13/APIA/VIAA/061) and by the German Helmholtz Association in frame of the Helmholtz-Alliance LIMTECH. The experiment was performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. The authors thank engineer Raimonds Nikoluškins (UL) for design and supervision during manufacturing of the setup, engineers Matīss Kalvāns (UL) and Thomas Steinberg (LUH) for support and operation of the setup during the experiment The authors are also thankful to Dr. Kalvis Kravalis (UL) for his effort in preparation of particles; Sten Anders and Dr. Tom Weier (both HZDR) for the invaluable help with particle tracking methods; Dr. Andris Bojarevičs and Dr. Ernests Platacis (both UL) for support and ideas in setup design and preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mihails Ščepanskis.

Additional information

Manuscript submitted August 25, 2016.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

The video file contains neutron radiography visualization of different types of the MHD flows described in Figure 3, variation in magnet rotation speed and examples of PIV and PTV post-processing (AVI 75406 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ščepanskis, M., Sarma, M., Vontobel, P. et al. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography. Metall Mater Trans B 48, 1045–1054 (2017). https://doi.org/10.1007/s11663-016-0902-8

Download citation

Keywords

  • Particle Image Velocimetry
  • Liquid Metal
  • Particle Tracking Velocimetry
  • Neutron Radiography
  • Neutron Image