Skip to main content
Log in

Microbubble Swarms in a Full-Scale Water Model Tundish

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Water modeling, using microbubble swarms, was performed in a full-scale, four-strand, delta-shaped tundish, located at the McGill Metals Processing Centre (MMPC). The objective of the study was to investigate the effectiveness of microbubbles in removing inclusions smaller than 50 μm, applying the principles and conditions previously researched using a smaller scale arrangement. Air was injected into a full-scale model of a ladle shroud (the connecting tube through which liquid steel flows into the tundish below). The model ladle shroud was fitted with twelve, laser-drilled orifices, so as to create microbubbles. The bubbles generated using different gas injection protocols were recorded using a high-speed camera, and the bubble images were postprocessed using the commercial software, ImageJ. With this newly designed ladle shroud, bubble sizes could be reduced dramatically, to as small as a 675 µm average diameter. A three-dimensional, CFD model simulation was developed, using parameters obtained from the corresponding water model experiments, in order to predict the behavior of these microbubbles within the tundish and their potential influence on flow patterns and inclusion float-out capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient (−)

d b :

Diameter of bubble (m)

Fr:

Froude number (−)

g :

Gravity acceleration (m2/s)

G k :

Generation rate of turbulence kinetic energy (−)

H :

Height of liquid bath

I :

Turbulence intensity (−)

k :

Turbulent kinetic energy (m2/s2)

l :

Turbulence length scale (m)

L :

Characteristic length (m)

L e :

Eddy length scale (m)

l 0 :

Length scale associated with small vortices (m)

\( \dot{m}_{\text{b}} \) :

Mass flow rate of bubbles (kg/s)

n i :

Number density of inclusions (number/m3)

N i :

Number of inclusions removed per unit time (number/s)

N b :

Number of bubbles (−)

p :

Pressure (Pa)

P, P C, P A :

Attachment, collision, and adhesion probability between inclusion and bubbles (−)

Q g :

Gas flow rate (m3/s)

R orifice :

The radius of the gas injection port (m)

Re:

Reynolds number (−)

Stk:

Stokes number (−)

t cross :

Eddy crossing time (s)

t r :

Bubble residence time (s)

Δt :

Time step (s)

u, u b :

Velocity of fluid flow and bubbles (m/s)

u av, u′:

Average fluid velocity and the fluctuation of the velocity (m/s)

u air :

Velocity of the gas crossing the orifice (m/s)

V s :

Swept volume (m3)

Wec :

Critical Weber number (−)

ρ, ρ g :

Densities of liquid and gas (kg/m3)

ε :

Turbulent dissipation rate (m2/s3)

ζ :

Normally distributed random number (−)

μ eff, μ, μ t :

Effective viscosity, laminar viscosity, and turbulent viscosity (kg/(m s))

σ :

Surface tension (N/m)

τ e, τ p :

Eddy life time and relaxation time (s)

DLS:

Dissipative ladle shroud

DPM:

Discrete phase model

RTD:

Residence time distribution

SEN:

Submerged entry nozzle

References

  1. Y. Miki, B. G. Thomas Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639-654.

    Article  Google Scholar 

  2. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, pp. 667-672.

    Article  Google Scholar 

  3. C. Chen, L. T. I. Jonsson, A. Tilliander, G. G. Cheng, P. G. Jonsson: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 169-190.

    Article  Google Scholar 

  4. D. Mazumdar and R. I. L. Guthrie: ISIJ Int., 1999, vol. 39, pp. 524-547.

    Article  Google Scholar 

  5. P. K. Jha, P. S. Rao and A. Dewan: ISIJ Int., 2008, vol. 48, pp. 154-160.

    Article  Google Scholar 

  6. R. D. Morales, J. D. J. Barreto, S. Lopez-Ramirez, J. Palafox-Ramos and D. Zacharias: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1505-1515.

    Article  Google Scholar 

  7. A. Cwudzinski: Steel Res. Int., 2014, vol. 85, pp. 902-917.

    Article  Google Scholar 

  8. K. Morales-Higa, R. I. L. Guthrie and M. Isac: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 63-79.

    Article  Google Scholar 

  9. S. Lopez-Ramirez, J. D. J. Barreto, Palafox-Ramos, R. D. Morales and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 615-627.

    Article  Google Scholar 

  10. L. F. Zhang, J. Aoki and B. G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361-379.

    Article  Google Scholar 

  11. H. L. Yang, P. He and Y. C. Zhai: ISIJ Int., 2014, vol. 54, pp. 578-581.

    Article  Google Scholar 

  12. A. Vargas-Zamora, R. D. Morales, M. Diaz-Cruz, J. Palafox-Ramos, J. D. J. Barreto-Sandoval: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 247-257.

    Article  Google Scholar 

  13. J. Wang, M. Y. Zhu, H. B. Zhou, Y. Wang: J. Iron Steel Res. Int., 2008, vol. 15(4), pp. 26-31.

    Article  Google Scholar 

  14. A. Cwudzinski: Steel Res. Int., 2010, vol. 81, pp. 123-131.

    Article  Google Scholar 

  15. J. P. Rogler, L. J. Heaslip and M. Mehrvar: Can. Metall. Q., 2003, vol. 43, pp. 407-415.

    Article  Google Scholar 

  16. A. Ramos-Banderas, R. D. Morales, L. Garcia-Demedices and M. Diaz-cruz: ISIJ Int., 2003, vol. 43, pp. 653-662.

    Article  Google Scholar 

  17. S. Chang, L. C. Zhong and Z. S. Zou: ISIJ Int., 2015, vol. 55, pp. 837-844.

    Article  Google Scholar 

  18. L. F. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59-82.

    Article  Google Scholar 

  19. K. Chattopadhyay, M. Isac and R. I. L. Guthrie: ISIJ Int., 2011, vol. 51, pp. 573-580.

    Article  Google Scholar 

  20. X.Y. Ren, Master Thesis, McGill University, Montreal, QC, Canada, 2014.

    Google Scholar 

  21. R.I.L. Guthrie and M. Isac: ISSTech Conf. 2003, AIST, Indianapolis, IN, 2003, pp. 1201–11

  22. W. P. Jones and B. E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301-314.

    Article  Google Scholar 

  23. B. E. Launder and D. B. Spalding: Comput. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269-289.

    Article  Google Scholar 

  24. S. A. Morsi and A. J. Alexander: J. Fluid. Mech., 1972, vol. 55, pp. 193-208.

    Article  Google Scholar 

  25. FLUENT 14.5 Theory Guide, Section 16.2.2.

  26. G. S. Dobby and J. A. Finch: Int. J. Miner. Process., 1987, vol. 21, pp. 241-260.

    Article  Google Scholar 

  27. A. V. Nguyen, H. J. Schulze, and J. Ralston: Int. J. Miner. Process., 1997, vol. 51, pp. 183-195.

    Article  Google Scholar 

  28. A. V. Nguyen: J. Colloid Interface Sci., 1994, vol. 162, pp. 123-138.

    Article  Google Scholar 

  29. M. E. Weber and D. Paddock: J. Colloid Interface Sci., 1983, vol. 94, pp. 328-335.

    Article  Google Scholar 

  30. S.H. Marshall, M.W. Chudacek, and D.F. Bagster: Chem. Eng. Sci., 1993, vol. 48, pp. 2049-2059.

    Article  Google Scholar 

  31. J. O. Hinze: AIChE J., 1955, vol. 1, pp. 289-295

    Article  Google Scholar 

  32. G. M. Evans, G. J. Jameson and B. W. Atkinson: Chem. Eng. Sci., 1992, vol. 47, pp. 3265-3272.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to NSERC, and to RTIT for research funding, to the MMPC for giving access to all its research facilities, and to ANSYS Inc. for providing the license of Fluent. The first author is also grateful to the China Scholarship Council for the financial support during his Ph. D studies at McGill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick I. L. Guthrie.

Additional information

Manuscript submitted August 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Cao, X., Zou, Z. et al. Microbubble Swarms in a Full-Scale Water Model Tundish. Metall Mater Trans B 47, 2732–2743 (2016). https://doi.org/10.1007/s11663-016-0747-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0747-1

Keywords

Navigation