Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation


By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise kε and kω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Siemens & Halske A.G.: German patent 518499, 1931.

  2. 2.

    O. Muck: German patent 422004, 1923.

  3. 3.

    E. Okress, D. Wroughton, G. Comenetz, P. Brace, J. Kelly: J. Appl. Phys., 1952, vol. 23, pp. 545-552.

    Article  Google Scholar 

  4. 4.

    J. W. S. Rayleigh: Proc. Royal Soc. London, 1879, vol. 29, pp. 71-79.

    Article  Google Scholar 

  5. 5.

    I. Egry, G. Lohoefer, G. Jacobs: Phys. Rev. Lett., 1995, vol. 75(22), pp. 4043-4046.

    Article  Google Scholar 

  6. 6.

    A. Bratz, I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341-359.

    Article  Google Scholar 

  7. 7.

    D. L. Cummings, D. A. Blackburn: J. Fluid Mech., 1991, vol. 224, pp. 395-416.

    Article  Google Scholar 

  8. 8.

    R. F. Brooks, A. P. Day: Int. J. Thermophys., 1999, vol. 20(4), pp. 1041-1050.

    Article  Google Scholar 

  9. 9.

    H. Lamb: Hydrodynamics. Dover: New York, 1945.

    Google Scholar 

  10. 10.

    L. M. Racz, I. Egry: Rev. Sci. Instrum., 1995, vol. 66(8), pp. 4254-4258.

    Article  Google Scholar 

  11. 11.

    T. Richardsen, G. Lohoefer: Int. J. Thermophys., 1999, vol. 20(4), pp. 1029-1039.

    Article  Google Scholar 

  12. 12.

    R. W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

    Article  Google Scholar 

  13. 13.

    Y. Takeda: Nuclear Technology, 1987, vol. 79, pp. 120-124.

    Google Scholar 

  14. 14.

    R. Ricou, C. Vives: International Journal of Heat and Mass Transfer, 1982, vol. 25, pp. 1579-1588.

    Article  Google Scholar 

  15. 15.

    M. Scepanskis, M. Sarma, R. Nikoluskins, K. Thomsen, A. Jakovics, P. Vontobel, T. Beinerts, A. Bojarevics, E. Platacis: Magnetohydrodynamics, 2015, vol. 51(2), pp. 257-266.

    Google Scholar 

  16. 16.

    E.M. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

  17. 17.

    J-H. Zong, J. Szekely, E. Schwartz: IEEE Transactions on Magnetics, 1992, vol. 28(3), pp. 1833-1842.

    Article  Google Scholar 

  18. 18.

    V. Bojarevics, K. Pericleous: ISIJ Int., 2003, vol. 43(6), pp. 890-898.

    Article  Google Scholar 

  19. 19.

    K. Pericleous, V. Bojarevics, and A. Roy: Int. J. Microgravity. Sci. Appl., 2013, vol. 30(1), pp. 56–63.

    Google Scholar 

  20. 20.

    C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang: Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988, p. 567.

    Book  Google Scholar 

  21. 21.

    D.C. Wilcox: Turbulence Modelling for CFD, DCW Industries, La Canada, CA, 1998, p. 540.

    Google Scholar 

  22. 22.

    V. Bojarevics, K. Pericleous, M. Cross: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 179-189.

    Article  Google Scholar 

  23. 23.

    S. Easter: Ph.D. Thesis, University of Greenwich, London, 2012.

  24. 24.

    B. Q. Li: Ann. N. Y. Acad. Sci., 2006, vol. 1077, pp. 1-32.

    Article  Google Scholar 

  25. 25.

    X. Ai: Ph.D. Thesis, Washington State University, Pullman, WA, 2004.

  26. 26.

    B. Q. Li: Int. J. Eng. Sci., 1993, vol. 31(2), pp. 201-220.

    Article  Google Scholar 

  27. 27.

    S. K. Lele: J. Comp. Phys., 1992, vol 103(1), pp. 16-42.

    Article  Google Scholar 

  28. 28.

    H. Le, P. Moin: Int. J. Numer. Meth. Fl., 1991, vol. 92(2), 369-379.

    Google Scholar 

  29. 29.

    R. W. Hyers, G. Trapaga, B. Abedian: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 29-36.

    Article  Google Scholar 

  30. 30.

    S. R. Berry, R. W. Hyers, L. M. Racz, B. Abedian: Int. J. Thermophys., 2005, vol. 26(5), pp. 1565-1581.

    Article  Google Scholar 

  31. 31.

    Team TEMPUS: Proc. IX Eur. Symp. On Gravity-Dependent Phenomena in Phys. Sci. Lecture Notes in Physics 464, 1996, Springer, New York, pp. 233–52.

  32. 32.

    C. W. Hirt, B. D. Nichols: J. Comp. Phys., 1981, vol. 39, pp. 201-225.

    Article  Google Scholar 

  33. 33.

    P. Chapelle, A. Jardy, D. Ablitzer, Yu. M. Pomarin, G. M. Grigorenko: J. Mater. Sci., 2008, vol. 43, pp. 3001-3008.

    Article  Google Scholar 

  34. 34.

    V. Bojarevics, K. Pericleous: Magnetohydrodynamics, 2001, vol. 37(1/2), pp. 93-102.

    Google Scholar 

  35. 35.

    S. Spitans, A. Jakovics, E. Baake, B. Nacke: Metall. Mater. Trans. B, 2013, vol. 44B(3), pp. 593-605.

    Article  Google Scholar 

  36. 36.

    E. Baake: Dr.-Ing. Thesis., Leibniz University, Dusseldorf, 1994.

  37. 37.

    M. Kirpo. Ph.D. Thesis, University of Latvia, Riga, 2008.

  38. 38.

    V. Bojarevics, A. Roy, K. Pericleous: Magnetohydrodynamics, 2010, vol. 46(4), pp. 317-329.

    Google Scholar 

  39. 39.

    O. Pesteanu, E. Baake: ISIJ International, 2011, Vol. 51(5), pp. 707-721.

    Article  Google Scholar 

  40. 40.

    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(1), pp. 121-132.

    Google Scholar 

  41. 41.

    C. Bullard, R. W. Hyers, B. Abedian: IEEE T. Magn., 2005, vol. 41(7), pp. 2230-2235.

    Article  Google Scholar 

  42. 42.

    J. Priede and G. Gerberth: J. Appl. Phys., 2006, vol. 100, p. 911.

    Article  Google Scholar 

  43. 43.

    V. Shatrov, J. Priede, G. Gerberth: Phys. Fluids, 2007, vol. 19, 078106.

    Article  Google Scholar 

  44. 44.

    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(3), pp. 567-578.

    Google Scholar 

Download references


This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” No. 2009/0162/1DP/ The authors wish to acknowledge the German Research Association for supporting this study under the Grant No. BA 3565/3-2. The authors would like to thank Dr. Valdis Bojarevics for kindly sharing his simulation data of Okress et al. experiment within personal communication.

Author information



Corresponding author

Correspondence to Sergejs Spitans.

Additional information

Manuscript submitted April 5, 2015.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 4239 kb)

Supplementary material 2 (MP4 30282 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spitans, S., Baake, E., Nacke, B. et al. Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation. Metall Mater Trans B 47, 522–536 (2016).

Download citation


  • Large Eddy Simulation
  • Lorentz Force
  • Shear Stress Transport
  • Droplet Shape
  • Large Eddy Simulation Model