Development of an Automatic Fabrication System for Cast Glassy Alloys


The developed automatic fabrication system comprised three component functions: weighing, alloying, and casting. The measurement error of automatic weighing specimen was about less 1 pct for Zr-based master alloys (approximately 30 g). Especially, sufficient stirrer effect of arc-melting ingot for homogeneity can be achieved by the development of sinusoidal arcing and applying magnetic field. In order to achieve superior homogeneity of the glass structure with no secondary phase (i.e., an intermetallic compound with a high melting temperature), a prealloying process should be advisable. In this study, high reliability of the density and mechanical properties of automatic processed cast glassy alloys (CGAs) was successfully obtained. The developed automatic fabrication process has a potential to accelerate the industrial application of CGAs in the near future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    A. Inoue, Acta Mater. 48(2000), 279-306.

    Article  Google Scholar 

  2. 2.

    W.L. Johnson, JOM 3(2002), 40-43.

    Article  Google Scholar 

  3. 3.

    J. Schroers, Adv. Mater., 22(2010), 1566-1597.

    Article  Google Scholar 

  4. 4.

    W.H. Wang, Progress Mater. Sci., 57(2012), 487-656.

    Article  Google Scholar 

  5. 5.

    M. Ishida, T. Uehara, T. Arai, H. Takeda, T. Yamaguchi, T. Taniguchi, T. Katsumi, M. Kobayashi, H. Ofune, Intermetallics, 10(2010), 1259-1263.

    Article  Google Scholar 

  6. 6.

    A. Inoue, A. Takeuchi, Mater. Sci. Eng., A 375-377(2004), 16-30.

    Article  Google Scholar 

  7. 7.

    W.L. Johnson: MRS Bull., 24(1999), 42-56.

    Article  Google Scholar 

  8. 8.

    A. A. Kundig, A. Dammann, W. L. Johnson, P. J. Uggowitzer, Mater. Sci. Eng. A, 375(2004), 327-331.

    Article  Google Scholar 

  9. 9.

    G. Kumar, H. X. Tang, and J. Schroers, Nature, 457(2009), 868-873.

    Article  Google Scholar 

  10. 10.

    S.J. Kim, S.Y. Kim, J.M. Park, J.N. Heo, J.H. Lee, S.M. Lee, D.H. Kim, W.T. Kim, K.R. Lim, D. Kim, S.C. Park, H.K. Kim, M.C. Song, J. Park, S.S. Jee, and E.S. Lee: Appl. Phys. Lett., 2012, 101, 064106-1-064106-3.

  11. 11.

    H. Kakiuchi, A. Inoue, M. Onuki, Y. Takano, T. Yamaguchi, Mater. Trans. 42 (2001), 678-681.

    Article  Google Scholar 

  12. 12.

    G. Wang, P. K. Liaw, Y. Yokoyama, M. Feels, A. Inoue, Adv. Eng. Mater., 10(2008), 1030-1033.

    Article  Google Scholar 

  13. 13.

    H. W. Kui, A. L. Greer, D. Turnbull, Applied Physics Letters, 45(1984), 615-616.

    Article  Google Scholar 

  14. 14.

    Z. P. Lu, C. T. Liu, W. D. Porter, Applied Physics Letters, 83(2003), 2581-2583.

    Article  Google Scholar 

  15. 15.

    C. T. Liu, M. F. Chisholm, M. K. Miller, Intermetallics, 10(2002), 1105-1112.

    Article  Google Scholar 

  16. 16.

    Y. Kawamura, A. Inoue, K. Sasamori, A. Kato, T. Masumoto, Mater. Trans. JIM, 34(1993), 969-975.

    Article  Google Scholar 

  17. 17.

    J. G. Lee, D. G. Lee, S. Lee, N. J. Kim, Metall. Mater. Trans. A, 35A(2004), 3753-3761.

    Article  Google Scholar 

  18. 18.

    T.W. Andy, J. Stevick, S.O’Keeffe, D.J. Stratton, J.C. Poole, M.S. Scott, and C.D. Prest, US Patent, US8701742 B2.

  19. 19.

    W. Johnson, G. Kaltenboeck, M. D. Demetriou, J. P. Schramm, X. Liu, K. Samwer, C. P. Kim, D. C. Hofmann, Science, 332(2011), 828-833.

    Article  Google Scholar 

  20. 20.

    V. Y. Markiv, V. V. Burnashova, Poroshk. Metall. 12(1970), 53-58.

    Google Scholar 

  21. 21.

    D. Wang, Y. Li, Acta Mater., 53(2005), 2969-2979.

    Article  Google Scholar 

  22. 22.

    Y. Yokoyama, H. Inoue, K. Fukaura, A. Inoue, Mater. Trans., 43(2002), 575-579.

    Article  Google Scholar 

  23. 23.

    H. Yasuda, Y. Tamura, T. Nagira, I. Ohnaka, Y. Yokoyama, A. Inoue, Mater. Trans. 46(2005), 2762-2766.

    Article  Google Scholar 

  24. 24.

    Y. Yokoyama, H. Fredriksson, H. Yasuda M. Nishijima, A. Inoue, Mater. Trans., 48(2007), 1363-1372.

    Article  Google Scholar 

  25. 25.

    Y. Yokoyama, T. Shinohara, K. Fukaura, A. Inoue, Mater. Trans., 45(2004), 1819-1823.

    Article  Google Scholar 

  26. 26.

    M. Gazzano, M. L. Focarete, C. Riekel and M. Scandola, Biomacromolecules 5(2004), 553-558.

    Article  Google Scholar 

  27. 27.

    Y. Yokoyama, A. Inoue, Mater. Trans., 36(1995), 1398-1402.

    Article  Google Scholar 

  28. 28.

    Y. Yokoyama, K. Inoue, K. Fukaura, Mater. Trans., 43(2002), 2316-2319.

    Article  Google Scholar 

  29. 29.

    For example,

  30. 30.

    For example,

  31. 31.

    A. L. Greer, J Non-Cryst Solids 61–62(1984), 737-748.

    Article  Google Scholar 

  32. 32.

    Y. Yokoyama, T. Yamasaki P. K. Liaw, A. Inoue: Acta. Mater., 2008, 56, 6097–108.

Download references


The author thanks I. Narita, K. Ohmura, and Y. Murakami for their skillful technical support in this study. The author also greatly thanks M. Sato, T. Yamaguchi, and M. Kobayashi at YKK Co. Ltd., T. Yokoyama, Y. Kawai, M. Kameyama, and Y. Chiba at DIAVAC Ltd., M. Nagaoka and M. Hisa at Nisshin Giken Co. Ltd., and K. Suzuki, N. Kubo, and K. Iryouda at GES Co. Ltd. for the construction of the automatic fabrication system. This research was funded in part by a JSPS KAKENHI Grant-in-Aid for Scientific Research (C) Project No. 23560857, New Energy and Industrial Technology Development Organization (NEDO), a research project named “Cast Glassy Alloy Inorganic Materials Joining Technology Development” in Japan, a Grant-in-aid for a research and development project on advanced cast glassy alloys from the Institute for Materials Research, and WPI at Tohoku University.

Author information



Corresponding author

Correspondence to Yoshihiko Yokoyama.

Additional information

Manuscript submitted September 4, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 1118 kb)

Supplementary material 2 (MOV 864 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, Y. Development of an Automatic Fabrication System for Cast Glassy Alloys. Metall Mater Trans B 46, 893–905 (2015).

Download citation


  • Master Alloy
  • Molten Alloy
  • Glassy Alloy
  • Crystalline Particle
  • Alloy Process