Skip to main content
Log in

On the mechanism of the anode effect in aluminum electrolysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dependency of the critical current density in aluminum electrolysis on the bulk concentration of alumina has been reported in various forms. Some workers found different relationships in restricted ranges of the alumina content and concluded on possible changes of the reaction mechanisms and various types of anode effect. A previously developed mathematical model could show that the anode effect is initiated as the actual current density equals the limiting one. The model is now applied to check some of the available theories. Comparison with experimental data shows that the varying effect of the alumina concentration can be described by a single relationship taking account of the combined action of mass transfer, fluid dynamics of gas release, and wettability for all values of the alumina content. The results suggest that there is every reason for the view that only one process occurs. A distinction of various types of mechanisms provoking the anode effect is unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

electrode surface area (m2)

c :

concentration (mol m−3)

C :

multiplier, Eqs. [1] and [2] (A m−2)

C 1 :

constant, Eq. [9] (A s m−3)

C 2 :

constant, Eq. [12] (m2 A−0.5 s−1)

C 3 :

constant, Eq. [14] (A m−2)

d :

final equivalent bubble diameter (m)

D :

diffusion coefficient (m2 s−1)

F :

Faraday constant, F=96,487 A s mol−1

f G :

gas evolution efficiency (—)

f I :

fraction of the current passing through the electrode side walls (—)

I :

total current (A)

I*:

maximum current, Eq. [16] (A)

j :

actual current density (A m−2)

k :

overall mass-transfer coefficient (m s−1)

k 0 :

microconvective mass-transfer coefficient (m s−1)

k v :

macroconvective mass-transfer coefficient (m s−1)

K :

multiplier, Eq. [21] (—)

L :

length of electrode edge crossed by bubbles (m)

M :

molar mass (kg mol−1)

n :

charge number (—)

p :

pressure (kg m−1 s−2)

R:

universal gas constant, R = 8.3143 kg m2 s−2 mol−1 K−1

Sc:

Schmidt number, Sc ≡ η L DA −1 ρ L −1

T :

temperature (°C)

ν max :

velocity (m s−1)

w :

alumina mass fraction (—)

ɛ :

current efficiency (—)

η L :

liquid viscosity (kg m−1 s)

ϑ :

contact angle

Θ*:

fractional shielding of the electrode surface by large bubbles (—)

Θ**:

fractional shielding of the electrode surface by small bubbles (—)

v :

stoichiometric number

ρ L :

liquid density (kg m−3)

A :

oxygen-containing ion

B :

dissolved gas

c :

critical

G :

gas

w :

electrode

∞:

liquid bulk

References

  1. G. Oesterheld and H. Brunner: Z. Elektrochemie, 1916, vol. 22, p. 38.

    CAS  Google Scholar 

  2. H. Vogt: Electrochim. Acta, 1997, vol. 42, p. 2695.

    Article  CAS  Google Scholar 

  3. H. Vogt: J. Appl. Electrochem., 1999, vol. 29, p. 137.

    Article  CAS  Google Scholar 

  4. H. Vogt: J. Appl. Electrochem., 1999, vol. 29, p. 779.

    Article  CAS  Google Scholar 

  5. H. Vogt: Aluminium, 2000, vol. 76, in press.

  6. R. Piontelli, B. Mazza, and P. Pedeferri: J. Electrochem. Soc., 1967, vol. 114, p. 652.

    Article  Google Scholar 

  7. V. Schischkin: Z. Elektrochemie, 1927, vol. 33, p. 83.

    Google Scholar 

  8. A.I. Belyaev, E.A. Zhemchuzhina, and L.A. Firsanova: Physikalische Chemie Geschmolzener Salze. Dt. Verlag für Grundstoffindustrie, Leipzig, 1964.

    Google Scholar 

  9. W. Karpachev, I.L. Dolgow, and N.M. Kantschinsky: Legkie Metally, 1934, vol. 3(2), p. 20; Chem. Zentralbl., 1934, vol. 105, p. 3830.

    Google Scholar 

  10. R. Piontelli, B. Mazza, and P. Pedeferri: Electrochim. Acta, 1965, vol. 10, p. 1117.

    Article  CAS  Google Scholar 

  11. R. Piontelli, B. Mazza, and P. Pedeferri: Metallurg. Ital., 1965, vol. 57(2), p. 1.

    Google Scholar 

  12. B. Mazza, P. Pedeferri, R. Piontelli, and A. Tognoni: Electrochim. Metall., 1967, vol. 2, p. 385.

    CAS  Google Scholar 

  13. B. Mazza, P. Pedeferri, and A. Tognoni: Chimica Ind., 1971, vol. 53, p. 123.

    CAS  Google Scholar 

  14. J. Thonstad: Electrochim. Acta, 1967, vol. 12, p. 1219.

    Article  CAS  Google Scholar 

  15. Z. Qiu and M. Zhang: Aluminium, 1985, vol. 61, p. 911.

    CAS  Google Scholar 

  16. Z. Qiu and M. Zhang: Electrochim. Acta, 1987, vol. 32, p. 607.

    Article  CAS  Google Scholar 

  17. A.J. Calandra, C.E. Castellano, and C.M. Ferro: Electrochim. Acta, 1979, vol. 24, p. 425.

    Article  CAS  Google Scholar 

  18. A.J. Calandra, C.E. Castellano, C.M. Ferro, and O. Cobo: in Light Metals 1982, J.E. Andersen, ed., TMS, Warrendale, PA, 1982, p. 345.

    Google Scholar 

  19. J. Thonstad, F. Nordmo, A.H. Husøy, K.Ø. Vee, and D.C. Austrheim: in Light Metals 1984, J.P. McGeer, ed., TMS, Warrendale, PA, 1984, p. 825.

    Google Scholar 

  20. H. Vogt: Electrochim. Acta, 1978, vol. 23, p. 203.

    Article  CAS  Google Scholar 

  21. G. Bendrich, W. Seiler, and H. Vogt: Int. J. Heat Mass Transfer, 1986, vol. 29, p. 1741.

    Article  CAS  Google Scholar 

  22. H. Vogt: Electrochim. Acta, 1987, vol. 32, p. 633.

    Article  CAS  Google Scholar 

  23. K. Stephan and H. Vogt: Electrochim. Acta, 1979, vol. 24, p. 11.

    Article  CAS  Google Scholar 

  24. H. Vogt: Electrochim. Acta, 1984, vol. 29, p. 167.

    Article  CAS  Google Scholar 

  25. M. Krenz: Dissertation A, Humboldt-Universität, Berlin, 1984.

    Google Scholar 

  26. H. Vogt: J. Electrochem. Soc., 1990, vol. 137, p. 1179.

    Article  CAS  Google Scholar 

  27. R. Piontelli, B. Mazza, P. Pedeferri, and A. Tognoni: Electrochim. Metall., 1967, vol. 2, p. 257.

    CAS  Google Scholar 

  28. E.W. Dewing and E.T. van der Kouwe: J. Electrochem. Soc., 1977, vol. 124, p. 58.

    Article  CAS  Google Scholar 

  29. H. Vogt: Electrochim. Acta, 1993, vol. 38, p. 1421.

    Article  CAS  Google Scholar 

  30. A.J. Calandra, J.R. Zavatti, and J. Thonstad: Electrochim. Acta, 1992, vol. 37, p. 711.

    Article  CAS  Google Scholar 

  31. K. Grjotheim, C. Krohn, M. Malinovský, K. Matiasovský, and J. Thonstad: Aluminum Electrolysis, Aluminum-Verlag, Düsseldorf, 1977, 2nd ed., 1982.

    Google Scholar 

  32. K. Grjotheim and C. Krohn: Freiberger Forschungsh, 2nd ed., Dt. Verlag für Grundstoffindustrie, Leipzig, 1964, vol. B82, p. 63.

    Google Scholar 

  33. P.P. Fedotieff and W. Iljansky: Z. anorg. Chemie, 1913, vol. 80, p. 130.

    Google Scholar 

  34. N.E. Richards: in Light Metals 1998, B. Welch, ed., TMS, Warrendale, PA, 1998, p. 521.

    Google Scholar 

  35. J. Thonstad, F. Nordmo, and K. Vee: Electrochim. Acta, 1973, vol. 18, pp. 27–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, H. On the mechanism of the anode effect in aluminum electrolysis. Metall Mater Trans B 31, 1225–1230 (2000). https://doi.org/10.1007/s11663-000-0009-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0009-z

Keywords

Navigation