Triple-Phase Eutectic High-Entropy Alloy: Al10Co18Cr18Fe18Nb10Ni26


A triple-phase eutectic high-entropy alloy (TEHEA) Al10Co18Cr18Fe18Nb10Ni26 is designed and successfully prepared by electric arc melting. The alloy is proved to consist of disordered face-centered cubic (FCC) phase, ordered body centered cubic (B2) phase and Laves phase with hexagonal close-packed (HCP) structure. Furthermore, a simple mixing method can be adopted to design TEHEAs and to locate the eutectic point composition. This class of alloys provides a new approach for the exploration of multicomponent triple-phase eutectic alloys with unique microstructure and properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    [1]J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    CAS  Article  Google Scholar 

  2. 2.

    [2]J.W. Yeh: JOM, 2013, vol. 65, pp. 1759-71.

    CAS  Article  Google Scholar 

  3. 3.

    [3]X. Jin, Y. Zhou, L. Zhang, X.Y. Du and B.S. Li: Mater. Lett., 2018, vol. 216, pp. 144-46.

    CAS  Article  Google Scholar 

  4. 4.

    [4]O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698-706.

    CAS  Article  Google Scholar 

  5. 5.

    X. Jin, J. Bi, L. Zhang, Y. Zhou, X.Y. Du, Y. Liang and B.S. Li: J. Alloys Compd., 2019, vol. 770, pp. 655-61.

    CAS  Article  Google Scholar 

  6. 6.

    [6]B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153-58.

    CAS  Article  Google Scholar 

  7. 7.

    [7]O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle and C.F. Woodward: J. Mater. Sci., 2012, vol. 47, pp. 4062-74.

    CAS  Article  Google Scholar 

  8. 8.

    [8]C.M. Lin and H.L. Tsai: Intermetallics, 2011, vol. 19, pp. 288-94.

    CAS  Article  Google Scholar 

  9. 9.

    [9]M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin and J.W. Yeh: Acta Mater., 2011, vol. 59, pp. 6308-17.

    CAS  Article  Google Scholar 

  10. 10.

    [10]S.R. Reddya, S. Baparib, P.P. Bhattacharjee and A.H. Chokshi: Mater. Res. Lett., 2017, vol. 5, pp. 408-14.

    Article  Google Scholar 

  11. 11.

    [11]M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini and G.M. Stocks: Phys. Rev. X, 2015, vol. 5, art no. 011041.

    Google Scholar 

  12. 12.

    [12]F. Otto, Y. Yang, H. Bei and E.P. George: Acta Mater., 2013, vol. 61, pp. 2628-38.

    CAS  Article  Google Scholar 

  13. 13.

    [13]Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li and P.K. Liaw: Scripta Mater., 2020, vol. 187, pp. 202-209.

    CAS  Article  Google Scholar 

  14. 14.

    [14]B. Chanda, G. Potnis, P.P. Jana and J. Das: J. Alloy. Compd., 2020, vol. 827, art no. 154226.

    CAS  Article  Google Scholar 

  15. 15.

    [15]X. Jin, Y. Zhou, L. Zhang, X.Y. Du and B.S. Li: Mater. Design, 2018, vol. 143, pp. 49-55.

    CAS  Article  Google Scholar 

  16. 16.

    [16]Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan and T.J. Li: Sci. Rep., 2014, vol. 4, art no. 6200.

    CAS  Article  Google Scholar 

  17. 17.

    [17]Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao and T.J. Li: Intermetallics, 2017, vol. 91, pp. 124-28.

    CAS  Article  Google Scholar 

  18. 18.

    [18]S.G. Ma and Y. Zhang: Mater. Sci. Eng. A, 2012, vol. 532, pp. 480-86.

    CAS  Article  Google Scholar 

  19. 19.

    [19]H. Jiang, K.M. Han, X.X. Gao, Y.P. Lu, Z.Q. Cao, M.C. Gao, J.A. Hawk and T.J. Li: Mater. Design, 2018, vol. 142, pp. 101-05.

    CAS  Article  Google Scholar 

  20. 20.

    [20]F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang and C.T. Liu: J. Alloy. Compd., 2016, vol. 656, pp. 284-89.

    CAS  Article  Google Scholar 

  21. 21.

    [21]M.X. Wu, S.B. Wang, H.J. Huang, D. Shu and B.D. Sun: Mater. Lett., 2020, vol. 262, art no. 127175.

    CAS  Article  Google Scholar 

  22. 22.

    [22]Q.F. Wu, Z.J. Wang, X.B. Hu, T. Zheng, Z.S. Yang, F. He, J.J. Li and J.C. Wang: Acta Mater., 2020, vol. 182, pp. 278-86.

    CAS  Article  Google Scholar 

  23. 23.

    [23]K.A. Jackson and J.D. Hunt: Trans. Metall. Soc. AIME, 1966. vol. 236, p. 1129.

    CAS  Google Scholar 

  24. 24.

    [24]I.E. Anderson, J. Walleser and J.L. Harringa: JOM, 2007, vol. 59, pp. 38-43.

    CAS  Article  Google Scholar 

  25. 25.

    [25]H.J. Wu, W.J. Foo, S.W. Chen and G.J. Snyder: Appl. Phys. Lett., 2012, vol. 101, p. 023107.

    Article  Google Scholar 

  26. 26.

    [26]H. Choi-Yim, D. Xu and W.L. Johnson: Appl. Phys. Lett., 2003. vol. 82, pp. 1030-32.

    CAS  Article  Google Scholar 

  27. 27.

    [27]J.H. Lee, A. Yoshikawa, Y. Murayama, Y. Waku, S. Hanada and T. Fukuda: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 1411-17.

    CAS  Article  Google Scholar 

  28. 28.

    [28]N. Zhang, Y.P. Yuan, X. Wang, X.L. Cao, X.J. Yang and S.C. Hu: Chem. Eng. J., 2013, vol. 231, pp. 214-19.

    CAS  Article  Google Scholar 

  29. 29.

    [29]V.T. Witusiewicz, L. Sturz, U. Hecht and S. Rex: J. Cryst. Growth, 2006, vol. 297, pp. 117-32.

    CAS  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (No. 50971051).

Author information



Corresponding author

Correspondence to Bangsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 29, 2020; accepted January 18, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Bi, J., Liang, Y. et al. Triple-Phase Eutectic High-Entropy Alloy: Al10Co18Cr18Fe18Nb10Ni26. Metall Mater Trans A (2021).

Download citation