Determining the Influence of Braze Temperature on the Dissolution Behaviour and Kinetics of Isothermal Solidification During Transient Liquid Phase Bonding (TLPB) Ni-Based Superalloys


A method for measuring the full liquid width of a braze joint during TLPB was developed based on enthalpy of solidification values obtained from DSC and microstructural measurements. This differs from most techniques in the literature which only measure the centreline eutectic width using metallographic methods. Comparison of full liquid width and eutectic only measurements confirmed that the rate of isothermal solidification and gap widening due to dissolution is underestimated, particularly at higher braze temperatures, when relying on eutectic measurements only. However, the time for complete isothermal solidification is the same whether considering the full liquid width or eutectic width. The underestimation of the IS rate by eutectic centreline measurements increases as the braze temperature increases above the filler liquidus temperature. The DSC enthalpy measurements were used to build a TLPB processing map for a range of braze temperatures and starting filler metal interlayer thickness. This map can predict the degree of gap widening and the time for complete isothermal solidification for this gap. Results indicate that an optimum braze temperature exists where the apposing influences of gap widening and increased IS rate combine to give the shortest IS completion time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    O.A. Ojo, N.L Richards, M.C. Chaturvedi, Sci. Tech. Weld. Joining, 2004, 9(6), pp. 532-40.

    CAS  Article  Google Scholar 

  2. 2.

    O.A. Idowu, N.L. Richards, M.C. Chaturvedi, Mat. Sci. and Eng. A, 2005, 397, pp. 98-112.

    Article  Google Scholar 

  3. 3.

    K. Tokoro, N.P. Wikstrom, O.A Ojo, M.C. Chaturvedi, Mat. Sci. & Eng. A, 2008, 477, pp. 311-318.

    Article  Google Scholar 

  4. 4.

    M. Mosallaee, A. Ekrami, K. Ohsasa, K. Matsuura, Met. & Mater. Trans. A, 2008, 39A, pp. 2389- 2402.

    CAS  Article  Google Scholar 

  5. 5.

    A.T. Egbewande. C. Chukwukaeme, O.A. Ojo (2008) Mater. Charact. 59:1051–58.

    CAS  Article  Google Scholar 

  6. 6.

    V. Jalilvand, H. Omidvar, M.R. Rahimipour, H.R. Shakeri, Materials and Design, 2013, 52 pp. 36–46.

    CAS  Article  Google Scholar 

  7. 7.

    M. Pouranvari, S.M. Mousavizadeh, Mater. Tech., 2015, 49: 247-251.

    Google Scholar 

  8. 8.

    I. Tuah-Poku, M. Dollar, T.B. Massalski, Metallurgical Transactions A, 1988, 19: 675-686.

    Article  Google Scholar 

  9. 9.

    K.D. Partz, E. Lugscheider, Welding Journal, 1983, 62, pp. S160-S164.

    Google Scholar 

  10. 10.

    Y. Nakao, K. Nishimoto, K. Shinozaki, C. Kang, Trans. Jpn. Weld. Soc., 1989, 20: 60-65.

    CAS  Google Scholar 

  11. 11.

    A. Sakamoto, C. Fujimara, R. Hattori, S. Sakai, Welding Journal, 1989, 68, pp.63-67.

    CAS  Google Scholar 

  12. 12.

    M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Mat. Sci. Eng. A, 2007, 447:125-133.

    Article  Google Scholar 

  13. 13.

    D.C. Murray, S.F. Corbin, J. Mater. Proc. Tech., 2017, 248, pp. 92-102.

    Article  Google Scholar 

  14. 14.

    E.D. Moreau, S.F. Corbin, Met. Mater. Trans. A., 2020, 51: 2882-2892.

    CAS  Article  Google Scholar 

  15. 15.

    C. Tadgell, S.F. Corbin, Can. Met. Quart., 2020, 59:3, pp. 288-296.

    CAS  Article  Google Scholar 

  16. 16.

    A. Ghasemi, M. Pouranvari, Sci. Tech. Weld. Joining, 2018, 23: 441-448.

    CAS  Article  Google Scholar 

  17. 17.

    J. Ruiz-Vargas, N. Siredey-Schwaller, P. Bocher, A. Hazotte, J. Mater. Proc. Tech., 2013, 213, pp. 2074-80.

    CAS  Article  Google Scholar 

  18. 18.

    X.P. Zhang, Y.W. Shi, Scripta Materialia, 2004, 50, pp. 1003-1006.

    CAS  Article  Google Scholar 

  19. 19.

    M. Pouranvari, A. Ekrami, A.H. Kokabi, Sci. & Tech. Welding and Joining, 2018, 23: 13–18.

    CAS  Article  Google Scholar 

Download references


Thanks to Thomas Georges, Francesco D’Angelo and Elizabeth Kendrick of Pratt and Whitney Canada for the contributions and guidance with this work.


This study was funded by the Government of Canada under the Natural Sciences and Engineering Council and Pratt and Whitney Canada under the Industrial Research Chair program.

Author information



Corresponding author

Correspondence to S. F. Corbin.

Ethics declarations

Conflict of interest

The research described in this paper was partially funded by Pratt and Whitney Canada (P&WC). The work was carried out with guidance and communication with P&WC personnel

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 14, 2020; accepted December 21, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corbin, S.F., Tadgell, C.A. Determining the Influence of Braze Temperature on the Dissolution Behaviour and Kinetics of Isothermal Solidification During Transient Liquid Phase Bonding (TLPB) Ni-Based Superalloys. Metall Mater Trans A (2021).

Download citation